题目大意
给出一个1到n的全排列,现在对这个全排列序列进行m次局部排序,排序分为两种:(0,l,r)表示将区间[l,r]的数字升序排序;(1,l,r)表示将区间[l,r]的数字降序排序。最后询问第q位置上的数字。n<=30000。
题解
关键词:反演。
我们假设最后q位置上的值为val。此时我们对整个序列进行排序...我们发现除了val外,其它点之间的顺序并不重要,只有其他点与val的相对大小才有意义。所以我们将原序列中位置上的值小于val的的值设为0,大于等于的设为1,整个序列上每个点的值表示的就是序列上的原值与val的大小关系。这样对01值排序用覆盖式的线段树来进行排序过程最方便了(具体看代码中的Sort)。
此时q位置上的值如果是0,则说明当前的val比答案大;若此时q位置上的值是1,则说明当前的val小于或等于答案。也就是说,val越大,最后q位上的值越有可能是0,val越小,q位上的值越有可能是1。因此我们可以用UpperBound二分得出答案。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cassert>
using namespace std;
const int MAX_N = 30010, MAX_NODE = MAX_N * 4, MAX_OP = 30010;
int OrgData[MAX_N];
int N, TotOp, P;
struct RangeTree
{
private:
struct Node
{
int Sum, Cover;
}_nodes[MAX_NODE];
int N;
void PushDown(int cur, int l, int r)
{
if (_nodes[cur].Cover >= 0)
{
_nodes[cur * 2].Cover = _nodes[cur].Cover;
_nodes[cur * 2 + 1].Cover = _nodes[cur].Cover;
int mid = (l + r) / 2;
_nodes[cur * 2].Sum = _nodes[cur].Cover * (mid - l + 1);
_nodes[cur * 2 + 1].Sum = _nodes[cur].Cover * (r - mid);
_nodes[cur].Cover = -1;
}
}
void PullUp(int cur)
{
_nodes[cur].Sum = _nodes[cur * 2].Sum + _nodes[cur * 2 + 1].Sum;
}
void Update(int cur, int al, int ar, int sl, int sr, int cover)
{
assert(al <= sr && ar >= sl && sl <= sr);
if (al <= sl && sr <= ar)
{
_nodes[cur].Cover = cover;
_nodes[cur].Sum = cover * (sr - sl + 1);
return;
}
PushDown(cur, sl, sr);
int mid = (sl + sr) / 2;
if (al <= mid)
Update(cur * 2, al, ar, sl, mid, cover);
if (ar > mid)
Update(cur * 2 + 1, al, ar, mid + 1, sr, cover);
PullUp(cur);
}
int Query(int cur, int al, int ar, int sl, int sr)
{
assert(al <= sr && ar >= sl && sl <= sr);
if (al <= sl && sr <= ar)
return _nodes[cur].Sum;
PushDown(cur, sl, sr);
int mid = (sl + sr) / 2, ans = 0;
if (al <= mid)
ans += Query(cur * 2, al, ar, sl, mid);
if (ar > mid)
ans += Query(cur * 2 + 1, al, ar, mid + 1, sr);
PullUp(cur);
return ans;
}
void InitBuild(int cur, int sl, int sr, int *a)
{
if (sl == sr)
{
_nodes[cur].Sum = a[sl];
_nodes[cur].Cover = -1;
return;
}
int mid = (sl + sr) / 2;
InitBuild(cur * 2, sl, mid, a);
InitBuild(cur * 2 + 1, mid + 1, sr, a);
_nodes[cur].Cover = -1;
PullUp(cur);
}
public:
void Init(int n, int *a)
{
N = n;
InitBuild(1, 1, N, a);
}
void Update(int l, int r, int cover)
{
if (l > r)
return;
Update(1, l, r, 1, N, cover);
}
int Query(int l, int r)
{
return Query(1, l, r, 1, N);
}
}g;
struct Oper//operation
{
int L, R;
bool IsUp;
Oper(){}
Oper(int l, int r, int isUp):L(l),R(r),IsUp(isUp){}
}_ops[MAX_OP];
void Sort(Oper op)
{
int sum1 = g.Query(op.L, op.R);
if (op.IsUp)
{
g.Update(op.R - sum1 + 1, op.R, 1);
g.Update(op.L, op.R - sum1, 0);
}
else
{
g.Update(op.L, op.L + sum1 - 1, 1);
g.Update(op.L + sum1, op.R, 0);
}
}
bool AnsNotLesser(int val)
{
static int a[MAX_N];
for (int i = 1; i <= N; i++)
a[i] = (OrgData[i] >= val);
g.Init(N, a);
for (int i = 1; i <= TotOp; i++)
Sort(_ops[i]);
return g.Query(P, P) == 1;
}
int UpperBound(int l, int r, bool(*InRange)(int))
{
while (l < r)
{
int mid = (l + r + 1) / 2;
if (InRange(mid))
l = mid;
else
r = mid - 1;
}
return l;
}
int main()
{
scanf("%d%d", &N, &TotOp);
for (int i = 1; i <= N; i++)
scanf("%d", OrgData + i);
for (int i = 1; i <= TotOp; i++)
{
int l, r, isDown;
scanf("%d%d%d", &isDown, &l, &r);
_ops[i] = Oper(l, r, !isDown);
}
scanf("%d", &P);
printf("%d
", UpperBound(1, N, AnsNotLesser));
return 0;
}