题目大意
运用两个栈的push和pop操作使得一个序列单调递增且操作字典序最小。$nleq 1000$。
题解
本题我们要尝试运用“瞪眼法”,也就是推样例。我们显然要数字尽可能地推入第一个栈。那么问题就是:怎样的两个数字不可以在同一个栈中呢?这样的效果是:当一个数字a想要出栈时,其上端有个被他大的数字b挡着,且是不得不挡着。怎么会“不得不”呢?那是因为有一个数字c<a在b的上面(原序列中,c在b的右面),因为要想使输出序列递增,必须把b入了栈以后才能出栈。所以,a和c不能共存。将所有满足a、c这样的条件的点连边,进行二分图染色(进入栈的编号)(染不了色输出-1),然后模拟即可。
#include <cstdio> #include <cstring> #include <algorithm> #include <stack> #include <vector> using namespace std; const int MAX_NODE = 1010, MAX_EDGE = MAX_NODE * MAX_NODE; vector<char> Ops; struct Node; struct Edge; struct Node { Edge *Head; int Color; }_nodes[MAX_NODE]; int TotNode; Node *A[MAX_NODE]; stack<Node*> St[3]; struct Edge { Node *To; Edge *Next; }_edges[MAX_EDGE]; int _eCount; void Dfs(Node *cur, int color) { if (cur->Color && cur->Color != color) { printf("0 "); exit(0); } if (cur->Color) return; cur->Color = color; for (Edge *e = cur->Head; e; e = e->Next) Dfs(e->To, color == 1 ? 2 : 1); } void AddEdge(Node *from, Node *to) { Edge *e = _edges + ++_eCount; e->To = to; e->Next = from->Head; from->Head = e; } void Build(Node *u, Node *v) { AddEdge(u, v); AddEdge(v, u); } void BuildGraph() { static Node *AftMinV[MAX_NODE]; AftMinV[TotNode] = A[TotNode]; for (int i = TotNode - 1; i >= 1; i--) AftMinV[i] = min(A[i], AftMinV[i + 1]); for (int i = 1; i <= TotNode; i++) for (int j = i + 1; j <= TotNode; j++) if (A[i] < A[j] && AftMinV[j] < A[i]) Build(A[i], A[j]); } int main() { scanf("%d", &TotNode); for (int i = 1; i <= TotNode; i++) { int vId; scanf("%d", &vId); A[i] = _nodes + vId; } BuildGraph(); for (int i = 1; i <= TotNode; i++) if (!A[i]->Color) Dfs(A[i], 1); Node *cur = _nodes + 1; for (int i = 1; i <= TotNode; i++) { Ops.push_back(A[i]->Color == 1 ? 'a' : 'c'); St[A[i]->Color].push(A[i]); while (!St[cur->Color].empty() && St[cur->Color].top() == cur) { St[cur->Color].pop(); Ops.push_back(cur->Color == 1 ? 'b' : 'd'); cur++; } } for (unsigned int i = 0; i < Ops.size(); i++) printf("%c ", Ops[i]); printf(" "); return 0; }