在python语言中,Tensorflow
中的tensor
返回的是numpy ndarray
对象。
Numpy
的主要对象是齐次多维数组,即一个元素表(通常是数字),所有的元素具有相同类型,可以通过有序整数列表元组tuple
访问其元素。In Numpy
, dimensions are called axes. The number of axes is rank.
Numpy
的数组类为ndarray
,它还有一个名气甚大的别名array
。需要注意的是:numpy.array
与python标准库中的array.array
并不完全相同,后者仅仅处理一维数组而且提供的函数功能较少。
比较重要的一些ndarray
数组的属性:
ndarray.ndim
: the number of axes (dimensions) of the array. In the Python world, the number of dimensions is referred to as rank.ndarray.shape
:the dimensions of the array. This is a tuple of integers indicating the size of the array in each dimension. For a matrix with n rows and m columns, shape will be(n,m)
. The length of the shape tuple is therefore the rank, or number of dimensions, ndim.ndarray.size
:the total number of elements of the array. This is equal to the product of the elements of shape.ndarray.dtype
:an object describing the type of the elements in the array. One can create or specify dtype’s using standard Python types. Additionally NumPy provides types of its own.numpy.int32
,numpy.int16
, andnumpy.float64
are some examples.ndarray.itemsize
:the size in bytes of each element of the array. For example, an array of elements of type float64 has itemsize 8 (=64/8), while one of type complex32 has itemsize 4 (=32/8). It is equivalent to ndarray.dtype.itemsize.ndarray.data
:the buffer containing the actual elements of the array. Normally, we won’t need to use this attribute because we will access the elements in an array using indexing facilities.
An Example
import numpy as np
a = np.arange(15).reshape(3, 5)
print a
print a.ndim
print a.shape
print a.size
print a.dtype
print a.itemsize
# print
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
2
(3, 5)
15
int64
8
Array Creation:
>>> a = np.array(1,2,3,4) # WRONG
>>> a = np.array([1,2,3,4]) # RIGHT
>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5, 2. , 3. ],
[ 4. , 5. , 6. ]])
>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j, 2.+0.j],
[ 3.+0.j, 4.+0.j]])
>>> np.zeros( (3,4) )
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
>>> np.ones( (2,3,4), dtype=np.int16 ) # dtype can also be specified
array([[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]],
[[ 1, 1, 1, 1],
[ 1, 1, 1, 1],
[ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) ) # uninitialized, output may vary
array([[ 3.73603959e-262, 6.02658058e-154, 6.55490914e-260],
[ 5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])
Basic Operations
>>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False], dtype=bool)
>>> A = np.array( [[1,1],
... [0,1]] )
>>> B = np.array( [[2,0],
... [3,4]] )
>>> A*B # elementwise product
array([[2, 0],
[0, 4]])
>>> A.dot(B) # matrix product
array([[5, 4],
[3, 4]])
>>> np.dot(A, B) # another matrix product
array([[5, 4],
[3, 4]])
>>> a = np.ones((2,3), dtype=int)
>>> b = np.random.random((2,3))
>>> a *= 3
>>> a
array([[3, 3, 3],
[3, 3, 3]])
>>> b += a
>>> b
array([[ 3.417022 , 3.72032449, 3.00011437],
[ 3.30233257, 3.14675589, 3.09233859]])
>>> a += b # b is not automatically converted to integer type
# Traceback (most recent call last):
# ...
# TypeError: Cannot cast ufunc add output from dtype('float64') to dtype('int64') with casting rule 'same_kind'
更多内容请阅读:https://docs.scipy.org/doc/numpy-dev/user/quickstart.html