zoukankan      html  css  js  c++  java
  • POJ1279 Art Gallery 多边形的核

    POJ1279 给一个多边形 求它的核的面积

    所谓多边形的核 是多边形中的一个点集 满足其中的点与多边形边上的点的连线全部在多边形中

    用多边形的每一条边所在的直线去切整个坐标平面 得到的一个凸包就是核

    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<algorithm>
    #include<queue>
    #include<vector>
    using namespace std;
    
    const double eps=1e-9;
    
    int cmp(double x)
    {
     if(fabs(x)<eps)return 0;
     if(x>0)return 1;
     	else return -1;
    }
    
    const double pi=acos(-1.0);
    
    inline double sqr(double x)
    {
     return x*x;
    }
    
    
    
    
    
    
    struct point
    {
     double x,y;
     point (){}
     point (double a,double b):x(a),y(b){}
     void input()
     	{
     	 scanf("%lf%lf",&x,&y);
    	}
     friend point operator +(const point &a,const point &b)
     	{
     	 return point(a.x+b.x,a.y+b.y);
    	}	
     friend point operator -(const point &a,const point &b)
     	{
     	 return point(a.x-b.x,a.y-b.y);
    	}
     friend bool operator ==(const point &a,const point &b)
     	{
     	 return cmp(a.x-b.x)==0&&cmp(a.y-b.y)==0;
    	}
     friend point operator *(const point &a,const double &b)
     	{
     	 return point(a.x*b,a.y*b);
    	}
     friend point operator*(const double &a,const point &b)
     	{
     	 return point(a*b.x,a*b.y);
    	}
     friend point operator /(const point &a,const double &b)
     	{
     	 return point(a.x/b,a.y/b);
    	}
     double norm()
     	{
     	 return sqr(x)+sqr(y);
    	}
    };
    
    struct line
    {
     point a,b;
     line(){};
     line(point x,point y):a(x),b(y)
     {
     	
     }
    };
    double det(const point &a,const point &b)
    {
     return a.x*b.y-a.y*b.x;
    }
    
    double dot(const point &a,const point &b)
    {
     return a.x*b.x+a.y*b.y; 
    }
    
    double dist(const point &a,const point &b)
    {
     return (a-b).norm();
    }
    
    point rotate_point(const point &p,double A)
    {
     double tx=p.x,ty=p.y;
     return point(tx*cos(A)-ty*sin(A),tx*sin(A)+ty*cos(A));
    }
    
    
    
    
    bool parallel(line a,line b)
    {
     return !cmp(det(a.a-a.b,b.a-b.b));
    }
    
    bool line_joined(line a,line b,point &res)
    {
     if(parallel(a,b))return false;
     double s1=det(a.a-b.a,b.b-b.a);
     double s2=det(a.b-b.a,b.b-b.a);
     res=(s1*a.b-s2*a.a)/(s1-s2);
     return true;
    }
    
    bool pointonSegment(point p,point s,point t)
    {
     return cmp(det(p-s,t-s))==0&&cmp(dot(p-s,p-t))<=0;
    }
    
    void PointProjLine(const point p,const point s,const point t,point &cp)
    {
     double r=dot((t-s),(p-s))/dot(t-s,t-s);
     cp=s+r*(t-s);
    }
    
    
    
    
    struct polygon_convex
    {
     vector<point>P;
     polygon_convex(int Size=0)
     	{
     	 P.resize(Size);
    	}	
    };
    
    struct halfPlane
    {
     double a,b,c;
     halfPlane(point p,point q)
     	{
     	 a=p.y-q.y;
     	 b=q.x-p.x;
     	 c=det(p,q);
    	}
     halfPlane(double aa,double bb,double cc)
     	{
     	 a=aa;b=bb;c=cc;
    	}
     
     	
    };
    
    
    double calc(halfPlane &L,point &a)
    {
     return a.x*L.a +a.y*L.b+L.c;
    }
    
    point Intersect(point &a,point &b,halfPlane &L)
    {
     point res;
     double t1=calc(L,a),t2=calc(L,b);
     res.x=(t2*a.x-t1*b.x)/(t2-t1);
     res.y=(t2*a.y-t1*b.y)/(t2-t1);
     //cout<<res.x<<" "<<res.y<<endl;
     return res;
    }
    
    
    
    polygon_convex cut(polygon_convex &a,halfPlane &L)
    {
     int n=a.P.size();
     polygon_convex res;
     for(int i=0;i<n;i++)
     	{
     	 if(calc(L,a.P[i])<-eps)res.P.push_back(a.P[i]);
     	 	else	
     	 		{
     	 		 int j;
     	 		 j=i-1;
     	 		 if(j<0)j=n-1;
     	 		 if(calc(L,a.P[j])<-eps)
    			   	  res.P.push_back(Intersect(a.P[j],a.P[i],L));
     	 		 j=i+1;
     	 		 if(j==n)j=0;
     	 		 if(calc(L,a.P[j])<-eps)
     	 		 	res.P.push_back(Intersect(a.P[i],a.P[j],L));
    			}
    	}
     return res;
    }
    double INF=1e+5;
    polygon_convex core(vector<point> &a)
    {
     polygon_convex res;
     res.P.push_back(point(-INF,-INF));
     res.P.push_back(point(INF,-INF));
     res.P.push_back(point(INF,INF));
     res.P.push_back(point(-INF,INF));
     int n=a.size();
     for(int i=0;i<n;i++)
     	{
     	 halfPlane L(a[i],a[(i+1)%n]);
     	 res=cut(res,L);
    	}
     return res;
    }
    bool comp_less(const point &a,const point &b)
    {
     return cmp(a.x-b.x)<0||cmp(a.x-b.x)==0&&cmp(a.y-b.y)<0;
     
    }
    
    
    polygon_convex convex_hull(vector<point> a)
    {
     polygon_convex res(2*a.size()+5);
     sort(a.begin(),a.end(),comp_less);
     a.erase(unique(a.begin(),a.end()),a.end());//删去重复点 
     int m=0;
     for(int i=0;i<a.size();i++)
     	{
     	 while(m>1&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m;
     	 res.P[m++]=a[i];
    	}
     int k=m;
     for(int i=int(a.size())-2;i>=0;--i)
     	{
     	 while(m>k&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m;
     	 res.P[m++]=a[i];
    	}
     res.P.resize(m);
     if(a.size()>1)res.P.resize(m-1);
     return res;
    }
    
    bool is_convex(vector<point> &a)
    {
     for(int i=0;i<a.size();i++)
     	{
     	 int i1=(i+1)%int(a.size());
     	 int i2=(i+2)%int(a.size());
     	 int i3=(i+3)%int(a.size());
     	 if((cmp(det(a[i1]-a[i],a[i2]-a[i1]))*cmp(det(a[i2]-a[i1],a[i3]-a[i2])))<0)
    	  	return false;
    	}
     return true;
    }
    int containO(const polygon_convex &a,const point &b)
    {
     int n=a.P.size();
     point g=(a.P[0]+a.P[n/3]+a.P[2*n/3])/3.0;
     int l=0,r=n;
     while(l+1<r)
     	{
     	 int mid=(l+r)/2;
     	 if(cmp(det(a.P[l]-g,a.P[mid]-g))>0)
     	 	{
     	 	 if(cmp(det(a.P[l]-g,b-g))>=0&&cmp(det(a.P[mid]-g,b-g))<0)r=mid;
     	 	 	else l=mid;
    		}else
    			{
    			 if(cmp(det(a.P[l]-g,b-g))<0&&cmp(det(a.P[mid]-g,b-g))>=0)l=mid;
     	 	 		else r=mid;	
    			}
    	} 
     r%=n;
     int z=cmp(det(a.P[r]-b,a.P[l]-b))-1;
     if(z==-2)return 1;
     return z;	
    }
    long long int distant(point a,point b)
    {
     return  (int(b.x)-int(a.x))*(int(b.x)-int(a.x))+(int(b.y)-int(a.y))*(int(b.y)-int(a.y));
    }
    double  convex_diameter(polygon_convex &a,int &First,int &Second)
    {
     vector<point> &p=a.P;
     int n=p.size();
     double maxd=0;
     if(n==1)
     	{
     	 First=Second=0;
     	 return maxd;
    	}
     #define next(i)((i+1)%n)
     for(int i=0,j=1;i<n;++i)
     	{
     	 while(cmp(det(p[next(i)]-p[i],p[j]-p[i])-det(p[next(i)]-p[i],p[next(j)]-p[i]))<0)
     	 	j=next(j);
     	 double d=dist(p[i],p[j]);
     	 if(d>maxd)
     	 	{
     	 	 maxd=d;
     	 	 First=i,Second=j;
    		}
    	 d=dist(p[next(i)],p[next(j)]);
    	 if(d>maxd)
    	 	{
    	 	 maxd=d;
     	 	 First=next(i),Second=next(j);
    		}
    	 
    	}
     return maxd;
    }
    
    
    double area(vector<point>a)
    {
     double sum=0;
     for(int i=0;i<a.size();i++)
     	sum+=det(a[(i+1)%(a.size())],a[i]);
     	return sum/2.;
    }
    vector<point> pp;
    int main()
    {freopen("t.txt","r",stdin);
     int T;
     scanf("%d",&T);
     while(T--)
     	{
     	 int n;
     	 scanf("%d",&n);
     	 pp.resize(n);
     	 for(int i=0;i<n;i++)
     	 	pp[i].input();
     	 polygon_convex pc=core(pp);
     	 printf("%.2lf
    ",-area(pc.P)+0.0005);
    	}
     return 0;
    }
    

      

  • 相关阅读:
    会话追踪技术
    request session application
    Java CAS同步机制 原理详解(为什么并发环境下的COUNT自增操作不安全): Atomic原子类底层用的不是传统意义的锁机制,而是无锁化的CAS机制,通过CAS机制保证多线程修改一个数值的安全性。
    mysql连接拍错总结
    git 从分支上创建一个分支
    linux ---> taskkill pid 8080 /f
    阿里java开发规范 强制约束
    for break
    Mybatis Update操作返回值问题
    springboot 缓存架构
  • 原文地址:https://www.cnblogs.com/heisenberg-/p/6700949.html
Copyright © 2011-2022 走看看