zoukankan      html  css  js  c++  java
  • 数仓学习1

    通常说的大数据平台主要包括三部分:

    • 数据相关的工具、产品和技术:

    – 批量数据采集传输sqoop,spark

    – 离线数据处理Hadoop,Hive,Spark

    – 实时流处理Storm,Spark Streaming,Flink

    • 数据资产:

    – 公司业务本身产生和沉淀的数据

    – 公司运作产生的数据(如财务、行政)

    – 第三方数据:外界购买、交换或者爬虫而来的数据

    • 数据管理:有了工具和数据,需要进行管理才能让数据价值最大和风险最小

    相关数据管理技术和概念:数据仓库、数据建模、数据质量、数据规范、数据安全和元数据管理

    心形模型

    维度表:一些属性的字典表 商品信息,

    事实表:用户行为

    雪花模型

    比如说用户年龄,性别  id---》id 姓名,与年龄

    统一标准:比如  一个业务部门  删除 0  在线 1 ,另一个 ,删除 N  在线 Y 

    口径就是常说的  where过滤条件

    上面的是一个业务线的数据建模

    整个大数据部门的数据仓库-------》数据集市{

    拉取相关字段建立宽表--------》在宽表的基础-----》各个业务抽取字段形成对应的业务表(机器学习的,数据分析的)-------》统计分析过程(join,或者中间临时表)-----》

    }

    这张 是对于公司所有类型的数据(埋点收集数据,员工数据、业务产品数据)全部存在数据仓库==============》后续分对应部门使用建表

    建模---》分层 的好处 :解耦,上游数据对下游影响较小,表的依赖关系去寻找业务问题

    ODSOperational Data Store,操作数据存储):原始数据层,数据源头表通常会原封不动的存储一份。DW层(DWDDWS层):

    DWD(data warehouse detail明细层

    DWS(data warehouse service 汇总层

    数据仓库明细层DWD和数据仓库汇总层DWS是数据平台的主要内容。它们是通过ODS层经过ETL清洗、转换、加载生成的

    基于维度建模理论来构建,通过一致性维度和数据总线来保证各个子主题的维度一致性。(就算数据表被删了也可以重新跑 从ODS恢复过来)

    ADS(集市数据层,也称应用层):应用层主要是各个业务方或者部门基于DWD和DWS建立的数据集市(DM),数据集市是相对于数据仓库来说的。一般应用层的数据是来源于DW层,原则上是不能访问ODS层的。对比于DW层,应用层只包含部门或业务方自己关心的明细层和汇总层的数据。(一般是将各个要用的表join起来形成宽表,供下游业务分析人员 select * )

     准备区:在hdfs备份一份原始数据

    dw:数据仓库,数据开发建模

    dm:数据集市应用  多表join的结果

    OLTPOLAP的区别:

    OLTP(online transaction Processing) 联机事务处理过程:侧重于单条数据的查新,主要是在关系型数据库上

    OLAP联机分析处理:专门的分析性数据库,侧重于批量的数据请求,更加试用于大数据查询处理

    列式存储的好处:

    对于OLAP 查询都是相关的列,不需要读取整个表所有字段进行处理

    对于OLTP 进行增删改查,多半是对整行数据进行操作

  • 相关阅读:
    tpescript中declare
    vue-router history模式 为什么需要服务端配置以及如何配置
    组件库搭建总结
    Babel
    高德地图实现轨迹围栏
    通过canvas实现描点连线功能
    vue项目使用echarts实现区域地图绘制,且可点击单独区域
    javascript正则表达式学习笔记
    el-loading修改默认样式
    Cannot read property 'resetFields' of undefined 问题及引申
  • 原文地址:https://www.cnblogs.com/hejunhong/p/11241656.html
Copyright © 2011-2022 走看看