zoukankan      html  css  js  c++  java
  • Tensorflow模型加载与保存、Tensorboard简单使用

    先上代码:

    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    # -*- coding: utf-8 -*-
    """
    Created on Tue Nov 14 20:34:00 2017
    
    @author: HJL
    """
    
    # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # ==============================================================================
    
    """A deep MNIST classifier using convolutional layers.
    
    See extensive documentation at
    https://www.tensorflow.org/get_started/mnist/pros
    """
    # Disable linter warnings to maintain consistency with tutorial.
    # pylint: disable=invalid-name
    # pylint: disable=g-bad-import-order
    
    
    
    import argparse
    import sys
    #import tempfile
    import time
    from tensorflow.examples.tutorials.mnist import input_data
    
    import tensorflow as tf
    
    FLAGS = None
    
    
    def deepnn(x):
      """deepnn builds the graph for a deep net for classifying digits.
    
      Args:
        x: an input tensor with the dimensions (N_examples, 784), where 784 is the
        number of pixels in a standard MNIST image.
    
      Returns:
        A tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values
        equal to the logits of classifying the digit into one of 10 classes (the
        digits 0-9). keep_prob is a scalar placeholder for the probability of
        dropout.
      """
      # Reshape to use within a convolutional neural net.
      # Last dimension is for "features" - there is only one here, since images are
      # grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
      with tf.name_scope('reshape'):
        x_image = tf.reshape(x, [-1, 28, 28, 1])
        tf.summary.image('input_image', x_image)
    
      # First convolutional layer - maps one grayscale image to 32 feature maps.
      with tf.name_scope('conv1'):
        W_conv1 = weight_variable([5, 5, 1, 32])
        b_conv1 = bias_variable([32])
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
        tf.summary.histogram('W_conv1', W_conv1)
      # Pooling layer - downsamples by 2X.
      with tf.name_scope('pool1'):
        h_pool1 = max_pool_2x2(h_conv1)
    
      # Second convolutional layer -- maps 32 feature maps to 64.
      with tf.name_scope('conv2'):
        W_conv2 = weight_variable([5, 5, 32, 64])
        b_conv2 = bias_variable([64])
        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    
      # Second pooling layer.
      with tf.name_scope('pool2'):
        h_pool2 = max_pool_2x2(h_conv2)
    
      # Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
      # is down to 7x7x64 feature maps -- maps this to 1024 features.
      with tf.name_scope('fc1'):
        W_fc1 = weight_variable([7 * 7 * 64, 1024])
        b_fc1 = bias_variable([1024])
    
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
      # Dropout - controls the complexity of the model, prevents co-adaptation of
      # features.
      with tf.name_scope('dropout'):
        keep_prob = tf.placeholder(tf.float32)
        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
      # Map the 1024 features to 10 classes, one for each digit
      with tf.name_scope('fc2'):
        W_fc2 = weight_variable([1024, 10])
        b_fc2 = bias_variable([10])
    
        y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
      return y_conv, keep_prob
    
    
    def conv2d(x, W):
      """conv2d returns a 2d convolution layer with full stride."""
      return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    
    def max_pool_2x2(x):
      """max_pool_2x2 downsamples a feature map by 2X."""
      return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                            strides=[1, 2, 2, 1], padding='SAME')
    
    
    def weight_variable(shape):
      """weight_variable generates a weight variable of a given shape."""
      initial = tf.truncated_normal(shape, stddev=0.1)
      return tf.Variable(initial)
    
    
    def bias_variable(shape):
      """bias_variable generates a bias variable of a given shape."""
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)
    
    
    def main(_):
      # Import data
      mnist = input_data.read_data_sets('./', one_hot=True)
    
      # Create the model
      x = tf.placeholder(tf.float32, [None, 784])
    
      # Define loss and optimizer
      y_ = tf.placeholder(tf.float32, [None, 10])
    
      # Build the graph for the deep net
      y_conv, keep_prob = deepnn(x)
    
      with tf.name_scope('loss'):
        cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_,
                                                                logits=y_conv)
      cross_entropy = tf.reduce_mean(cross_entropy)
      
    
      with tf.name_scope('adam_optimizer'):
        #train_step = tf.train.AdadeltaOptimizer(1e-4).minimize(cross_entropy)
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
      with tf.name_scope('accuracy'):
        correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
        correct_prediction = tf.cast(correct_prediction, tf.float32)
      accuracy = tf.reduce_mean(correct_prediction)
      
      
      graph_location = "./log/"  #tempfile.mkdtemp()
      print('Saving graph to: %s' % graph_location)
      train_writer = tf.summary.FileWriter(graph_location)
      train_writer.add_graph(tf.get_default_graph())#保存默认的图
      
      tf.summary.scalar('cross_entropy', cross_entropy)
      tf.summary.scalar('accuracy', accuracy)
      merged = tf.summary.merge_all()
      
      with tf.Session() as sess:
        #模型保存  step1
        saver = tf.train.Saver()
        checkpoint_dir="./"
        #返回checkpoint文件中checkpoint的状态
        ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
        #print(ckpt)
        if ckpt and ckpt.model_checkpoint_path:#如果存在以前保存的模型
          print('Restore the model from checkpoint %s' % ckpt.model_checkpoint_path)
            # Restores from checkpoint
          saver.restore(sess, ckpt.model_checkpoint_path)#加载模型
          start_step = int(ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1])
        else:#如果不存在之前保存的模型
          sess.run(tf.global_variables_initializer())#变量初始化
          start_step = 0
          print('start training from new state')      
          
        
        
        for i in range(start_step,start_step+20000):
          batch = mnist.train.next_batch(50)
          if i % 100 == 0:
            train_accuracy = accuracy.eval(feed_dict={
                x: batch[0], y_: batch[1], keep_prob: 1.0})
            print('step %d, training accuracy %g' % (i, train_accuracy))
            #step2   每隔一段时间 保存模型
            saver.save(sess, './log/my_test_model',global_step=i)
            
            
          summary,_=sess.run([merged, train_step],feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
          train_writer.add_summary(summary, i)
          #time.sleep(0.5)
    
        print('test accuracy %g' % accuracy.eval(feed_dict={
            x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
    
    if __name__ == '__main__':
      #main()
      
      parser = argparse.ArgumentParser()
      parser.add_argument('--data_dir', type=str,
                          default='./data/MNIST/',
                          help='Directory for storing input data')
      FLAGS, unparsed = parser.parse_known_args()
      tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
      

     上述代码输出如下:

    模型的加载与保存

    模型的保存涉及到两个函数:

    saver = tf.train.Saver()

    saver.save(sess, './log/my_test_model',global_step=i)

    即,先创建tf.train.Saver 对象,用于后续模型保存与加载,默认保存所有参数。saver.save用于将模型及参数保存到文件中,通过传递一个值给可选参数 global_step ,你可以编号checkpoint 名字。上述代码中每隔100步,将模型保存一次。保存结果如下(默认保存最新的5个模型):

     对于模型的加载,涉及如下函数:

    saver = tf.train.Saver()

    saver.restore(sess, ckpt.model_checkpoint_path)
    
    
    tf.train.Saver.restore(sess, save_path)
    恢复之前保存的变量
    这个方法运行构造器为恢复变量所添加的操作。它需要启动图的Session。恢复的变量不需要经过初始化,恢复作为初始化的一种方法。
    save_path 参数是之前调用save() 的返回值,或调用 latest_checkpoint() 的返回值。
    参数:
    • sess:  用于恢复参数的Session
    • save_path:  参数之前保存的路径

    TensorBoard简单使用

    涉及如下几个函数:

    train_writer = tf.summary.FileWriter(graph_location)
    train_writer.add_graph(tf.get_default_graph())
    
    ...
    
    tf.summary.scalar('cross_entropy', cross_entropy)#
    tf.summary.scalar('accuracy', accuracy)
    tf.summary.image('input_image', x_image)
    tf.summary.histogram('W_conv1', W_conv1)
    merged = tf.summary.merge_all()
    
    ...
    summary,_=sess.run([merged, train_step],feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    train_writer.add_summary(summary, i)
    • Summary:所有需要在TensorBoard上展示的统计结果。

    • tf.name_scope():为Graph中的Tensor添加层级,TensorBoard会按照代码指定的层级进行展示,初始状态下只绘制最高层级的效果,点击后可展开层级看到下一层的细节。

    • tf.summary.scalar():添加标量统计结果。

    • tf.summary.histogram():添加任意shape的Tensor,统计这个Tensor的取值分布。

    • tf.summary.merge_all():添加一个操作,代表执行所有summary操作,这样可以避免人工执行每一个summary op。

    • tf.summary.FileWrite:用于将Summary写入磁盘,需要制定存储路径logdir,如果传递了Graph对象,则在Graph Visualization会显示Tensor Shape Information。执行summary op后,将返回结果传递给add_summary()方法即可。

    最后结果:

    Scalar

    (对应:

    tf.summary.scalar('cross_entropy', cross_entropy)
    tf.summary.scalar('accuracy', accuracy)

    对应:

    tf.summary.image('input_image', x_image)

     

     对应:

    train_writer.add_graph(tf.get_default_graph())

    对应:

    tf.summary.histogram('W_conv1', W_conv1)

  • 相关阅读:
    总结一下HtmlAgilityPack
    sql server中获得刚刚插入的记录的主键ID
    关于存储过程的一点总结
    asp.net 中System.Web.UI.Page子类的成员变量的生存周期
    sql server存储过程模板
    第三方库HtmlAgilityPack的一个Bug
    如何在存储过程内部调用另一个存储过程 EXEC
    C#中的哈希表和字典的区别
    Android Intent的几种用法全面总结
    个人练习:ListView绑定数据和显示的几种方式
  • 原文地址:https://www.cnblogs.com/hejunlin1992/p/7840864.html
Copyright © 2011-2022 走看看