zoukankan      html  css  js  c++  java
  • 『Networkx』常用方法

    这是一个用于分析'图'结构的包,由于我只是用到了浅显的可视化功能,所以这个介绍会对其使用浅尝辄止。

     解决matplotlib中文字体缺失问题,

    from pylab import mpl
    
    mpl.rcParams['font.sans-serif'] = ['FangSong']    # 指定默认字体
    mpl.rcParams['axes.unicode_minus'] = False        # 解决保存图像是负号'-'显示为方块的问题

    读入数据,

    import pandas as pd
    import networkx as nx
    
    data = pd.read_csv(u'C:Projectspython3_5Gephi\17级学硕导师情况.csv')

    由于图的edge输入格式是(节点1,节点2)的形式,所以我们需要整理一下数据格式,

    edges = [edge for edge in zip(data[data.columns[0]],data['Unnamed: 2'])]
    edges.extend([edge for edge in zip(data[data.columns[0]],data['Unnamed: 3'])])
    edges.extend([edge for edge in zip(data[data.columns[5]],data['Unnamed: 7'])])
    edges.extend([edge for edge in zip(data[data.columns[5]],data['Unnamed: 8'])])
    edges = pd.DataFrame(edges,columns=['导师','学生']).dropna(how='any')

    画图,这里面采取的是为Graph对象添加edge的形式,也可添加node等等,

    实际的体会是异常自由,节点本事没有类型限制,也就是说你可以把数字、字符、其他格式的对象乃至另一个Graph赋为一个节点,当然这在可视化时意义不大,但是networkx包最大功用其实是图分析而非可视化(实际上可视化是一个辅助功能),我了解不多,也只能帮着拍拍手叫叫好了(逃~~

    G = nx.Graph()
    G.add_edges_from([edge for edge in zip(edges['导师'],edges['学生'])])
    
    nx.draw(G,
            # pos = nx.random_layout(G),
            # pos = nx.spring_layout(G),
            # pos = nx.shell_layout(G),
            pos = nx.circular_layout(G),
            node_color = 'r',
            # edge_color = 'b',
            with_labels = True,
            font_size =20,
            node_size =1000,
            alpha=0.3)
    

      

    由于涉及隐私,这里的图我把标签取消了,不过实际效果也就这样,差不太多。

  • 相关阅读:
    大数据之路Week10_day01 (练习:通过设计rowkey来实现查询需求)
    大数据之路Week10_day01 (通过直接创建Hfile文件的方式往Hbase中插入数据)
    大数据之路Week10_day01 (Hbase总结 II)
    Week09_day05(Java API操作Hbase)
    Week09_day05(Hbase的基本使用)
    Zookeeper、Hadoop、Hbase的启动顺序以及关闭顺序
    Week09_day05(Hbase的安装搭建)
    HDU 1198
    hdu 1250 Hat's Fibonacci(java,简单,大数)
    HDU 1316 How Many Fibs?(java,简单题,大数)
  • 原文地址:https://www.cnblogs.com/hellcat/p/7593940.html
Copyright © 2011-2022 走看看