zoukankan      html  css  js  c++  java
  • 『TensorFlow』读书笔记_Inception_V3_下

    极为庞大的网络结构,不过下一节的ResNet也不小

    线性的组成,结构大体如下:

    常规卷积部分->Inception模块组1->Inception模块组2->Inception模块组3->池化->1*1卷积(实现个线性变换)->分类器

                                                                                    |_>辅助分类器

    代码如下,

    # Author : Hellcat
    # Time   : 2017/12/12
    # refer  : https://github.com/tensorflow/models/
    #          blob/master/research/inception/inception/slim/inception_model.py
    
    import time
    import math
    import tensorflow as tf
    from datetime import datetime
    
    slim = tf.contrib.slim
    # 截断误差初始化生成器
    trunc_normal = lambda stddev:tf.truncated_normal_initializer(0.0,stddev)
    
    def inception_v3_arg_scope(weight_decay=0.00004,
                               stddv=0.1,
                               batch_norm_var_collection='moving_vars'):
        '''
        网络常用函数默认参数生成
        :param weight_decay: L2正则化decay
        :param stddv: 标准差
        :param batch_norm_var_collection: 
        :return: 
        '''
        batch_norm_params = {
            'decay':0.9997,                                          # 衰减系数
            'epsilon':0.001,
            'updates_collections':{
                'bate':None,
                'gamma':None,
                'moving_mean':[batch_norm_var_collection],          # 批次均值
                'moving_variance':[batch_norm_var_collection]       # 批次方差
            }
        }
        # 外层环境
        with slim.arg_scope([slim.conv2d,slim.fully_connected],
                            # 权重正则化函数
                            weights_regularizer=slim.l2_regularizer(weight_decay)):
            # 内层环境
            with slim.arg_scope([slim.conv2d],
                                # 权重初始化函数
                                weights_initializer=tf.truncated_normal_initializer(stddev=stddv),
                                # 激活函数,默认为nn.relu
                                activation_fn=tf.nn.relu,
                                # 正则化函数,默认为None
                                normalizer_fn=slim.batch_norm,
                                # 正则化函数参数,字典形式
                                normalizer_params=batch_norm_params) as sc:
                return sc
    
    def inception_v3_base(inputs,scope=None):
        # 保存关键节点
        end_points = {}
        # 重载作用域的名称,创建新的作用域名称(前面是None时使用),输入tensor
        with tf.variable_scope(scope,'Inception_v3',[inputs]):
            with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d],
                                stride=1,padding='VALID'):
                # 299*299*3
    
                net = slim.conv2d(inputs,32,[3,3],stride=2,scope='Conv2d_1a_3x3')          # 149*149*32
                net = slim.conv2d(net,32,[3,3],scope='Conv2d_2a_3x3')                      # 147*147*32
                net = slim.conv2d(net,64,[3,3],padding='SAME',scope='Conv2d_2b_3x3')       # 147*147*64
                net = slim.max_pool2d(net,[3,3],stride=2,scope='MaxPool_3a_3x3')           # 73*73*64
                net = slim.conv2d(net,80,[1,1],scope='Conv2d_3b_1x1')                      # 73*73*80
                net = slim.conv2d(net,192,[1,1],scope='Conv2d_4a_3x3')                     # 71*71*192
                net = slim.max_pool2d(net,[3,3],stride=2,scope='MaxPool_5a_3x3')           # 35*35*192
    
            with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d],
                                stride=1,padding='SAME'):
                '''Inception 第一模组块'''
                # Inception_Module_1
                with tf.variable_scope('Mixed_5b'):                                        # 35*35*256
                    with tf.variable_scope('Branch_0'):
                        branch_0 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1')
                    with tf.variable_scope('Branch_1'):
                        branch_1 = slim.conv2d(net,48,[1,1],scope='Conv2d_0a_1x1')
                        branch_1 = slim.conv2d(branch_1,64,[5,5],scope='Conv2d_0b_5x5')
                    with tf.variable_scope('Branch_2'):
                        branch_2 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1')
                        branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0b_3x3')
                        branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0c_3x3')
                    with tf.variable_scope('Branch_3'):
                        branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                        branch_3 = slim.conv2d(branch_3,32,[1,1],scope='Conv2d_0b_1x1')
                    net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3)
    
                # Inception_Module_2
                with tf.variable_scope('Mixed_5c'):                                        # 35*35*288
                    with tf.variable_scope('Branch_0'):
                        branch_0 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1')
                    with tf.variable_scope('Branch_1'):
                        branch_1 = slim.conv2d(net,48,[1,1],scope='Conv2d_0a_1x1')
                        branch_1 = slim.conv2d(branch_1,64,[5,5],scope='Conv2d_0b_5x5')
                    with tf.variable_scope('Branch_2'):
                        branch_2 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1')
                        branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0b_3x3')
                        branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0c_3x3')
                    with tf.variable_scope('Branch_3'):
                        branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                        branch_3 = slim.conv2d(branch_3,64,[1,1],scope='Conv2d_0b_1x1')
                    net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3)
    
                # Inception_Module_3
                with tf.variable_scope('Mixed_5d'):                                        # 35*35*288
                    with tf.variable_scope('Branch_0'):
                        branch_0 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1')
                    with tf.variable_scope('Branch_1'):
                        branch_1 = slim.conv2d(net,48,[1,1],scope='Conv2d_0a_1x1')
                        branch_1 = slim.conv2d(branch_1,64,[5,5],scope='Conv2d_0b_5x5')
                    with tf.variable_scope('Branch_2'):
                        branch_2 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1')
                        branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0b_3x3')
                        branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0c_3x3')
                    with tf.variable_scope('Branch_3'):
                        branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                        branch_3 = slim.conv2d(branch_3,64,[1,1],scope='Conv2d_0b_1x1')
                    net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3)
    
                '''Inception 第二模组块'''
                # Inception_Module_1
                with tf.variable_scope('Mixed_6a'):                                        # 17*17*768
                    with tf.variable_scope('Branch_0'):
                        branch_0 = slim.conv2d(net,384,[3,3],stride=2,
                                               padding='VALID',scope='Conv2d_1a_1x1')
                    with tf.variable_scope('Branch_1'):
                        branch_1 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1')
                        branch_1 = slim.conv2d(branch_1,96,[3,3],scope='Conv2d_0b_3x3')
                        branch_1 = slim.conv2d(branch_1,96,[3,3],stride=2,
                                               padding='VALID',scope='Conv2d_1a_3x3')
                    with tf.variable_scope('Branch_2'):
                        branch_2 = slim.max_pool2d(net,[3,3],stride=2,padding='VALID',
                                                   scope='Max_Pool_1a_3x3')
                    net = tf.concat([branch_0,branch_1,branch_2],axis=3)
    
                # Inception_Module_2
                with tf.variable_scope('Mixed_6b'):                                        # 17*17*768
                    with tf.variable_scope('Branch_0'):
                        branch_0 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                    with tf.variable_scope('Branch_1'):
                        branch_1 = slim.conv2d(net,128,[1,1],scope='Conv2d_0a_1x1')
                        branch_1 = slim.conv2d(branch_1,128,[1,7],scope='Conv2d_0b_1x7')
                        branch_1 = slim.conv2d(branch_1,192,[7,1],scope='Conv2d_0c_7x1')
                    with tf.variable_scope('Branch_2'):
                        branch_2 = slim.conv2d(net,128,[1,1],scope='Conv2d_0a_1x1')
                        branch_2 = slim.conv2d(branch_2,128,[7,1],scope='Conv2d_0b_7x1')
                        branch_2 = slim.conv2d(branch_2,128,[1,7],scope='Conv2d_0c_1x7')
                        branch_2 = slim.conv2d(branch_2,128,[7,1],scope='Conv2d_0d_7x1')
                        branch_2 = slim.conv2d(branch_2,192,[1,7],scope='Conv2d_0e_1x7')
                    with tf.variable_scope('Branch_3'):
                        branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                        branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1')
                    net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3)
    
                # Inception_Module_3
                with tf.variable_scope('Mixed_6c'):                                        # 17*17*768
                    with tf.variable_scope('Branch_0'):
                        branch_0 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                    with tf.variable_scope('Branch_1'):
                        branch_1 = slim.conv2d(net,160,[1,1],scope='Conv2d_0a_1x1')
                        branch_1 = slim.conv2d(branch_1,160,[1,7],scope='Conv2d_0b_1x7')
                        branch_1 = slim.conv2d(branch_1,192,[7,1],scope='Conv2d_0c_7x1')
                    with tf.variable_scope('Branch_2'):
                        branch_2 = slim.conv2d(net,160,[1,1],scope='Conv2d_0a_1x1')
                        branch_2 = slim.conv2d(branch_2,160,[7,1],scope='Conv2d_0b_7x1')
                        branch_2 = slim.conv2d(branch_2,160,[1,7],scope='Conv2d_0c_1x7')
                        branch_2 = slim.conv2d(branch_2,160,[7,1],scope='Conv2d_0d_7x1')
                        branch_2 = slim.conv2d(branch_2,192,[1,7],scope='Conv2d_0e_1x7')
                    with tf.variable_scope('Branch_3'):
                        branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                        branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1')
                    net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3)
    
                # Inception_Module_4
                with tf.variable_scope('Mixed_6d'):                                        # 17*17*768
                    with tf.variable_scope('Branch_0'):
                        branch_0 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                    with tf.variable_scope('Branch_1'):
                        branch_1 = slim.conv2d(net,160,[1,1],scope='Conv2d_0a_1x1')
                        branch_1 = slim.conv2d(branch_1,160,[1,7],scope='Conv2d_0b_1x7')
                        branch_1 = slim.conv2d(branch_1,192,[7,1],scope='Conv2d_0c_7x1')
                    with tf.variable_scope('Branch_2'):
                        branch_2 = slim.conv2d(net,160,[1,1],scope='Conv2d_0a_1x1')
                        branch_2 = slim.conv2d(branch_2,160,[7,1],scope='Conv2d_0b_7x1')
                        branch_2 = slim.conv2d(branch_2,160,[1,7],scope='Conv2d_0c_1x7')
                        branch_2 = slim.conv2d(branch_2,160,[7,1],scope='Conv2d_0d_7x1')
                        branch_2 = slim.conv2d(branch_2,192,[1,7],scope='Conv2d_0e_1x7')
                    with tf.variable_scope('Branch_3'):
                        branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                        branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1')
                    net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3)
    
                # Inception_Module_5
                with tf.variable_scope('Mixed_6e'):                                        # 17*17*768
                    with tf.variable_scope('Branch_0'):
                        branch_0 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                    with tf.variable_scope('Branch_1'):
                        branch_1 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                        branch_1 = slim.conv2d(branch_1,192,[1,7],scope='Conv2d_0b_1x7')
                        branch_1 = slim.conv2d(branch_1,192,[7,1],scope='Conv2d_0c_7x1')
                    with tf.variable_scope('Branch_2'):
                        branch_2 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                        branch_2 = slim.conv2d(branch_2,192,[7,1],scope='Conv2d_0b_7x1')
                        branch_2 = slim.conv2d(branch_2,192,[1,7],scope='Conv2d_0c_1x7')
                        branch_2 = slim.conv2d(branch_2,192,[7,1],scope='Conv2d_0d_7x1')
                        branch_2 = slim.conv2d(branch_2,192,[1,7],scope='Conv2d_0e_1x7')
                    with tf.variable_scope('Branch_3'):
                        branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                        branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1')
                    net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3)
                end_points['Mixed_6e'] = net
    
                '''Inception 第三模组块'''
                # Inception_Module_1
                with tf.variable_scope('Mixed_7a'):                                        # 8*8*1280
                    with tf.variable_scope('Branch_0'):
                        branch_0 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                        branch_0 = slim.conv2d(branch_0,320,[3,3],stride=2,
                                               padding='VALID',scope='Conv2d_1a_3x3')
                    with tf.variable_scope('Branch_1'):
                        branch_1 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1')
                        branch_1 = slim.conv2d(branch_1,192,[1,7],scope='Conv2d_0b_1x7')
                        branch_1 = slim.conv2d(branch_1,192,[7,1],scope='Conv2d_0c_7x1')
                        branch_1 = slim.conv2d(branch_1,192,[3,3],stride=2,padding='VALID',scope='Conv2d_1a_3x3')
                    with tf.variable_scope('Branch_2'):
                        branch_2 = slim.max_pool2d(net,[3,3],stride=2,padding='VALID',
                                                   scope='MaxPool_1a_3x3')
                    net = tf.concat([branch_0,branch_1,branch_2],3)
    
                # Inception_Module_2
                with tf.variable_scope('Mixed_7b'):                                        # 8*8*2048
                    with tf.variable_scope('Branch_0'):
                        branch_0 = slim.conv2d(net,320,[1,1],scope='Conv2d_0a_1x1')
                    with tf.variable_scope('Branch_1'):
                        branch_1 = slim.conv2d(net,384,[1,1],scope='Conv2d_0a_1x1')
                        branch_1 = tf.concat([
                            slim.conv2d(branch_1,384,[1,3],scope='Conv2d_0b_1x3'),
                            slim.conv2d(branch_1,384,[3,1],scope='Conv2d_0b_3x1')],axis=3)
                    with tf.variable_scope('Branch_2'):
                        branch_2 = slim.conv2d(net,448,[1,1],scope='Conv2d_0a_1x1')
                        branch_2 = slim.conv2d(branch_2,384,[3,3],scope='Conv2d_0b_3x3')
                        branch_2 = tf.concat([
                            slim.conv2d(branch_2,384,[1,3],scope='Conv2d_0c_1x3'),
                            slim.conv2d(branch_2,384,[3,1],scope='Conv2d_0d_3x1')],axis=3)
                    with tf.variable_scope('Branch_3'):
                        branch_3 = slim.max_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                        branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1')
                    net = tf.concat([branch_0,branch_1,branch_2,branch_3],3)
    
                # Inception_Module_3
                with tf.variable_scope('Mixed_7c'):                                        # 8*8*2048
                    with tf.variable_scope('Branch_0'):
                        branch_0 = slim.conv2d(net,320,[1,1],scope='Conv2d_0a_1x1')
                    with tf.variable_scope('Branch_1'):
                        branch_1 = slim.conv2d(net,384,[1,1],scope='Conv2d_0a_1x1')
                        branch_1 = tf.concat([
                            slim.conv2d(branch_1,384,[1,3],scope='Conv2d_0b_1x3'),
                            slim.conv2d(branch_1,384,[3,1],scope='Conv2d_0b_3x1')],axis=3)
                    with tf.variable_scope('Branch_2'):
                        branch_2 = slim.conv2d(net,448,[1,1],scope='Conv2d_0a_1x1')
                        branch_2 = slim.conv2d(branch_2,384,[3,3],scope='Conv2d_0b_3x3')
                        branch_2 = tf.concat([
                            slim.conv2d(branch_2,384,[1,3],scope='Conv2d_0c_1x3'),
                            slim.conv2d(branch_2,384,[3,1],scope='Conv2d_0d_3x1')],axis=3)
                    with tf.variable_scope('Branch_3'):
                        branch_3 = slim.max_pool2d(net,[3,3],scope='AvgPool_0a_3x3')
                        branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1')
                net = tf.concat([branch_0,branch_1,branch_2,branch_3],3)
    
                return net,end_points
    
    def inception_v3(inputs,
                     num_classes=1000,
                     is_training=True,
                     dropout_keep_prob=0.8,
                     prediction_fn=slim.softmax,
                     spatial_squeeze=True,
                     reuse=None,
                     scope='Inception_v3'):
        with tf.variable_scope(scope,'Inception_v3',[inputs,num_classes],reuse=reuse) as scope:
            with slim.arg_scope([slim.batch_norm,slim.dropout],
                                is_training=is_training):
                net,end_points = inception_v3_base(inputs,scope=scope)
                with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d],
                                    stride=1,padding='SAME'):
                    # 17*17*768
                    aux_logits = end_points['Mixed_6e']
                    with tf.variable_scope('AuxLogits'):
                        aux_logits = slim.avg_pool2d(aux_logits,[5,5],stride=3,padding='VALID',scope='AvgPool_1a_5x5')
                        aux_logits = slim.conv2d(aux_logits,128,[1,1],scope='Conv2d_1b_1x1')
                        aux_logits = slim.conv2d(aux_logits,768,[5,5],
                                                 weights_initializer=trunc_normal(0.01),
                                                 padding='VALID',
                                                 scope='Conv2d_2a_5x5')
                        aux_logits = slim.conv2d(aux_logits,num_classes,[1,1],activation_fn=None,
                                                 normalizer_fn=None,weights_initializer=trunc_normal(0.001),
                                                 scope='Conv2d_2b_1x1')
                        if spatial_squeeze:
                            aux_logits = tf.squeeze(aux_logits,[1,2],
                                                    name='SpatialSqueeze')
                        end_points['AuxLogits'] = aux_logits
                    with tf.variable_scope('Logits'):
                        net = slim.avg_pool2d(net,[8,8],padding='VALID',
                                              scope='AvgPool_1a_8x8')
                        net = slim.dropout(net,keep_prob=dropout_keep_prob,scope='Dropout_1b')
                        end_points['PreLogits'] = net
                        logits = slim.conv2d(net,num_classes,[1,1],activation_fn=None,
                                             normalizer_fn=None,scope='Conv2d_1c_1x1')
                        if spatial_squeeze:
                            logits = tf.squeeze(logits,[1,2],name='SpatialSqueeze')
                        end_points['Logits'] = logits
                        end_points['Predictions'] = prediction_fn(logits,scope='Predictions')
                    return logits, end_points
    
    def time_tensorflow_run(session, target, info_string):
        '''
        网路运行时间测试函数
        :param session: 会话对象
        :param target: 运行目标节点
        :param info_string:提示字符 
        :return: None
        '''
        num_steps_burn_in = 10           # 预热轮数
        total_duration = 0.0             # 总时间
        total_duration_squared = 0.0     # 总时间平方和
        for i in range(num_steps_burn_in + num_batches):
            start_time = time.time()
            _ = session.run(target)
            duration = time.time() - start_time # 本轮时间
            if i >= num_steps_burn_in:
                if not i % 10:
                    print('%s: step %d, duration = %.3f' %
                          (datetime.now(),i-num_steps_burn_in,duration))
                    total_duration += duration
                    total_duration_squared += duration**2
    
        mn = total_duration/num_batches   # 平均耗时
        vr = total_duration_squared/num_batches - mn**2
        sd = math.sqrt(vr)
        print('%s:%s across %d steps, %.3f +/- %.3f sec / batch' %
              (datetime.now(), info_string, num_batches, mn, sd))
    
    if __name__ == '__main__':
        batch_size=32
        height,width = 299,299
        inputs = tf.random_uniform((batch_size,height,width,3))
        with slim.arg_scope(inception_v3_arg_scope()):
            logits,end_points = inception_v3(inputs,is_training=False)
        init = tf.global_variables_initializer()
        sess = tf.Session()
        sess.run(init)
        num_batches = 100
        time_tensorflow_run(sess,logits,'Forward')
    

    运行起来时耗过长,就不贴了。

  • 相关阅读:
    Git 命令 stash cherry-pick reset rebase
    【操作系统】不同语言的线程实现机制对比及数据库锁问题
    【数据结构】搜索二叉树(BST)和普通二叉树的序列化与反序列化
    【自制编译器】读书笔记 -- JavaCC使用的JJ文件格式
    leetcode 874 Robot Simulation
    hihocoder 编程挑战赛75
    浪漫主义的起源--以赛亚柏林
    【美团笔试 2018-4-20 】编程题-1 测例100%通过 欧拉函数求解gcd
    【POJ SOJ HDOJ】HDU 2196 Computer 树中的最长路径
    【Java 核心】多线程笔记
  • 原文地址:https://www.cnblogs.com/hellcat/p/8058335.html
Copyright © 2011-2022 走看看