极为庞大的网络结构,不过下一节的ResNet也不小
线性的组成,结构大体如下:
常规卷积部分->Inception模块组1->Inception模块组2->Inception模块组3->池化->1*1卷积(实现个线性变换)->分类器
|_>辅助分类器
代码如下,
# Author : Hellcat # Time : 2017/12/12 # refer : https://github.com/tensorflow/models/ # blob/master/research/inception/inception/slim/inception_model.py import time import math import tensorflow as tf from datetime import datetime slim = tf.contrib.slim # 截断误差初始化生成器 trunc_normal = lambda stddev:tf.truncated_normal_initializer(0.0,stddev) def inception_v3_arg_scope(weight_decay=0.00004, stddv=0.1, batch_norm_var_collection='moving_vars'): ''' 网络常用函数默认参数生成 :param weight_decay: L2正则化decay :param stddv: 标准差 :param batch_norm_var_collection: :return: ''' batch_norm_params = { 'decay':0.9997, # 衰减系数 'epsilon':0.001, 'updates_collections':{ 'bate':None, 'gamma':None, 'moving_mean':[batch_norm_var_collection], # 批次均值 'moving_variance':[batch_norm_var_collection] # 批次方差 } } # 外层环境 with slim.arg_scope([slim.conv2d,slim.fully_connected], # 权重正则化函数 weights_regularizer=slim.l2_regularizer(weight_decay)): # 内层环境 with slim.arg_scope([slim.conv2d], # 权重初始化函数 weights_initializer=tf.truncated_normal_initializer(stddev=stddv), # 激活函数,默认为nn.relu activation_fn=tf.nn.relu, # 正则化函数,默认为None normalizer_fn=slim.batch_norm, # 正则化函数参数,字典形式 normalizer_params=batch_norm_params) as sc: return sc def inception_v3_base(inputs,scope=None): # 保存关键节点 end_points = {} # 重载作用域的名称,创建新的作用域名称(前面是None时使用),输入tensor with tf.variable_scope(scope,'Inception_v3',[inputs]): with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d], stride=1,padding='VALID'): # 299*299*3 net = slim.conv2d(inputs,32,[3,3],stride=2,scope='Conv2d_1a_3x3') # 149*149*32 net = slim.conv2d(net,32,[3,3],scope='Conv2d_2a_3x3') # 147*147*32 net = slim.conv2d(net,64,[3,3],padding='SAME',scope='Conv2d_2b_3x3') # 147*147*64 net = slim.max_pool2d(net,[3,3],stride=2,scope='MaxPool_3a_3x3') # 73*73*64 net = slim.conv2d(net,80,[1,1],scope='Conv2d_3b_1x1') # 73*73*80 net = slim.conv2d(net,192,[1,1],scope='Conv2d_4a_3x3') # 71*71*192 net = slim.max_pool2d(net,[3,3],stride=2,scope='MaxPool_5a_3x3') # 35*35*192 with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d], stride=1,padding='SAME'): '''Inception 第一模组块''' # Inception_Module_1 with tf.variable_scope('Mixed_5b'): # 35*35*256 with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net,48,[1,1],scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1,64,[5,5],scope='Conv2d_0b_5x5') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3,32,[1,1],scope='Conv2d_0b_1x1') net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3) # Inception_Module_2 with tf.variable_scope('Mixed_5c'): # 35*35*288 with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net,48,[1,1],scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1,64,[5,5],scope='Conv2d_0b_5x5') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3,64,[1,1],scope='Conv2d_0b_1x1') net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3) # Inception_Module_3 with tf.variable_scope('Mixed_5d'): # 35*35*288 with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net,48,[1,1],scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1,64,[5,5],scope='Conv2d_0b_5x5') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2,96,[3,3],scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3,64,[1,1],scope='Conv2d_0b_1x1') net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3) '''Inception 第二模组块''' # Inception_Module_1 with tf.variable_scope('Mixed_6a'): # 17*17*768 with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net,384,[3,3],stride=2, padding='VALID',scope='Conv2d_1a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net,64,[1,1],scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1,96,[3,3],scope='Conv2d_0b_3x3') branch_1 = slim.conv2d(branch_1,96,[3,3],stride=2, padding='VALID',scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(net,[3,3],stride=2,padding='VALID', scope='Max_Pool_1a_3x3') net = tf.concat([branch_0,branch_1,branch_2],axis=3) # Inception_Module_2 with tf.variable_scope('Mixed_6b'): # 17*17*768 with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net,128,[1,1],scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1,128,[1,7],scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1,192,[7,1],scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net,128,[1,1],scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2,128,[7,1],scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2,128,[1,7],scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2,128,[7,1],scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2,192,[1,7],scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1') net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3) # Inception_Module_3 with tf.variable_scope('Mixed_6c'): # 17*17*768 with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net,160,[1,1],scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1,160,[1,7],scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1,192,[7,1],scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net,160,[1,1],scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2,160,[7,1],scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2,160,[1,7],scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2,160,[7,1],scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2,192,[1,7],scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1') net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3) # Inception_Module_4 with tf.variable_scope('Mixed_6d'): # 17*17*768 with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net,160,[1,1],scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1,160,[1,7],scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1,192,[7,1],scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net,160,[1,1],scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2,160,[7,1],scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2,160,[1,7],scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2,160,[7,1],scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2,192,[1,7],scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1') net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3) # Inception_Module_5 with tf.variable_scope('Mixed_6e'): # 17*17*768 with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1,192,[1,7],scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1,192,[7,1],scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2,192,[7,1],scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2,192,[1,7],scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2,192,[7,1],scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2,192,[1,7],scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net,[3,3],scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1') net = tf.concat([branch_0,branch_1,branch_2,branch_3],axis=3) end_points['Mixed_6e'] = net '''Inception 第三模组块''' # Inception_Module_1 with tf.variable_scope('Mixed_7a'): # 8*8*1280 with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1') branch_0 = slim.conv2d(branch_0,320,[3,3],stride=2, padding='VALID',scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net,192,[1,1],scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1,192,[1,7],scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1,192,[7,1],scope='Conv2d_0c_7x1') branch_1 = slim.conv2d(branch_1,192,[3,3],stride=2,padding='VALID',scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(net,[3,3],stride=2,padding='VALID', scope='MaxPool_1a_3x3') net = tf.concat([branch_0,branch_1,branch_2],3) # Inception_Module_2 with tf.variable_scope('Mixed_7b'): # 8*8*2048 with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net,320,[1,1],scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net,384,[1,1],scope='Conv2d_0a_1x1') branch_1 = tf.concat([ slim.conv2d(branch_1,384,[1,3],scope='Conv2d_0b_1x3'), slim.conv2d(branch_1,384,[3,1],scope='Conv2d_0b_3x1')],axis=3) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net,448,[1,1],scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2,384,[3,3],scope='Conv2d_0b_3x3') branch_2 = tf.concat([ slim.conv2d(branch_2,384,[1,3],scope='Conv2d_0c_1x3'), slim.conv2d(branch_2,384,[3,1],scope='Conv2d_0d_3x1')],axis=3) with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net,[3,3],scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1') net = tf.concat([branch_0,branch_1,branch_2,branch_3],3) # Inception_Module_3 with tf.variable_scope('Mixed_7c'): # 8*8*2048 with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net,320,[1,1],scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net,384,[1,1],scope='Conv2d_0a_1x1') branch_1 = tf.concat([ slim.conv2d(branch_1,384,[1,3],scope='Conv2d_0b_1x3'), slim.conv2d(branch_1,384,[3,1],scope='Conv2d_0b_3x1')],axis=3) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net,448,[1,1],scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2,384,[3,3],scope='Conv2d_0b_3x3') branch_2 = tf.concat([ slim.conv2d(branch_2,384,[1,3],scope='Conv2d_0c_1x3'), slim.conv2d(branch_2,384,[3,1],scope='Conv2d_0d_3x1')],axis=3) with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net,[3,3],scope='AvgPool_0a_3x3') branch_3 = slim.conv2d(branch_3,192,[1,1],scope='Conv2d_0b_1x1') net = tf.concat([branch_0,branch_1,branch_2,branch_3],3) return net,end_points def inception_v3(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.8, prediction_fn=slim.softmax, spatial_squeeze=True, reuse=None, scope='Inception_v3'): with tf.variable_scope(scope,'Inception_v3',[inputs,num_classes],reuse=reuse) as scope: with slim.arg_scope([slim.batch_norm,slim.dropout], is_training=is_training): net,end_points = inception_v3_base(inputs,scope=scope) with slim.arg_scope([slim.conv2d,slim.max_pool2d,slim.avg_pool2d], stride=1,padding='SAME'): # 17*17*768 aux_logits = end_points['Mixed_6e'] with tf.variable_scope('AuxLogits'): aux_logits = slim.avg_pool2d(aux_logits,[5,5],stride=3,padding='VALID',scope='AvgPool_1a_5x5') aux_logits = slim.conv2d(aux_logits,128,[1,1],scope='Conv2d_1b_1x1') aux_logits = slim.conv2d(aux_logits,768,[5,5], weights_initializer=trunc_normal(0.01), padding='VALID', scope='Conv2d_2a_5x5') aux_logits = slim.conv2d(aux_logits,num_classes,[1,1],activation_fn=None, normalizer_fn=None,weights_initializer=trunc_normal(0.001), scope='Conv2d_2b_1x1') if spatial_squeeze: aux_logits = tf.squeeze(aux_logits,[1,2], name='SpatialSqueeze') end_points['AuxLogits'] = aux_logits with tf.variable_scope('Logits'): net = slim.avg_pool2d(net,[8,8],padding='VALID', scope='AvgPool_1a_8x8') net = slim.dropout(net,keep_prob=dropout_keep_prob,scope='Dropout_1b') end_points['PreLogits'] = net logits = slim.conv2d(net,num_classes,[1,1],activation_fn=None, normalizer_fn=None,scope='Conv2d_1c_1x1') if spatial_squeeze: logits = tf.squeeze(logits,[1,2],name='SpatialSqueeze') end_points['Logits'] = logits end_points['Predictions'] = prediction_fn(logits,scope='Predictions') return logits, end_points def time_tensorflow_run(session, target, info_string): ''' 网路运行时间测试函数 :param session: 会话对象 :param target: 运行目标节点 :param info_string:提示字符 :return: None ''' num_steps_burn_in = 10 # 预热轮数 total_duration = 0.0 # 总时间 total_duration_squared = 0.0 # 总时间平方和 for i in range(num_steps_burn_in + num_batches): start_time = time.time() _ = session.run(target) duration = time.time() - start_time # 本轮时间 if i >= num_steps_burn_in: if not i % 10: print('%s: step %d, duration = %.3f' % (datetime.now(),i-num_steps_burn_in,duration)) total_duration += duration total_duration_squared += duration**2 mn = total_duration/num_batches # 平均耗时 vr = total_duration_squared/num_batches - mn**2 sd = math.sqrt(vr) print('%s:%s across %d steps, %.3f +/- %.3f sec / batch' % (datetime.now(), info_string, num_batches, mn, sd)) if __name__ == '__main__': batch_size=32 height,width = 299,299 inputs = tf.random_uniform((batch_size,height,width,3)) with slim.arg_scope(inception_v3_arg_scope()): logits,end_points = inception_v3(inputs,is_training=False) init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) num_batches = 100 time_tensorflow_run(sess,logits,'Forward')
运行起来时耗过长,就不贴了。