zoukankan      html  css  js  c++  java
  • 『TensorFlow』生成式网络中的图片预处理

    简介

    这里的生成式网络是广义的生成式,不仅仅指gan网络,还有风格迁移中的类自编码器网络,以及语义分割中的类自编码器网络,因为遇到次数比较多,所以简单的记录一下。

    背景

    1、像素和数字

    图像处理目标一般就是RGB三色通道,原始图像解码后是0~255,这个矩阵传给matplotlib就可以直接绘图了,与此同0~1的图像matplotlib也是可以接受的,关于这点,我们来看看文档是怎么说的,

    Elements of RGB and RGBA arrays represent pixels of an MxN image.
            All values should be in the range [0 .. 1] for floats or
            [0 .. 255] for integers.  Out-of-range values will be clipped to
            these bounds.

    即使0~1也能够使用,我们常用的还是0~255的数据。

    2、生成式网络输出的限制

    生成式网络不同于分类网络,其输出的目标是图像,对照上面也就是0~255范围(这个更常用)的矩阵,这就意味着网络的输出有所限制的,且是不同于分类网络全部限制于0~1或者-1~1的,正如分类网络的sigmoid或者softmax一样,我们会在最后一个卷积/转置卷积层后采取一些操作保证输出满足图像的要求。

    实际思路

    输入图像为了保证可以被用于loss,需要和输出图像的值域相同,所以有两个思路:

    1. 输入图像值压缩到-1~1附近
    2. 输出图像值放大到0~255

    gan网络中

    我们采用方式为:原像素数据除以127.5减去1的操作,使得输出值保持在-1~1之间,可以配合sigmoid激活函数进行学习

    实际测试一下,我们将这里的预处理(TFR_process.py)做一下调整,使得值不再被压缩,

    '''图像预处理'''
    # image_decode = tf.cast(image_decode, tf.float32)/127.5-1
    image_decode = tf.cast(image_decode, tf.float32)
    

     相应的将生成网络(DCGAN_function.py)作出调整,

    h4 = deconv2d(h3, [batch_size, s_h, s_w, c_dim], scope='g_h4')
    return h4  # tf.nn.tanh(h4)
    

    可以看到结果依旧可以训练出来,效果如下。

    快速风格迁移中

    我们采用0~255作为输入,生成数据仍为0~255(主要分布),然后将输出数据进一步操作,送入vgg进行loss计算。

    此时的生成式网络最后一层可以不加激活,输出会自行收敛在目标附近,也可以tanh激活(-1~1)后加1再乘127.5。

  • 相关阅读:
    K2 BPM介绍(2)
    K2 BPM介绍(1)
    认识BPM
    使用VS Code发布博客
    IIS 使用 HTTP/2
    IIS 8的第一次请求不变慢如何配置
    C# 图片识别技术(支持21种语言,提取图片中的文字)
    第九讲 C#练习题
    c#基础 第八讲
    c#基础 第六讲
  • 原文地址:https://www.cnblogs.com/hellcat/p/8992352.html
Copyright © 2011-2022 走看看