【题目】
实现函数double Power(double base, int exponent),求base的exponent次方,不需要考虑溢出。
【分析】
这是一道看起来很简单的问题,很容易写出如下的代码:
C++ Code
1
2 3 4 5 6 7 8 9 |
double Power(double base, int exponent) { double result = 1.0; for(int i = 1; i <= exponent; ++i) result *= base; return result; } |
上述代码存在的问题:
(1) 由于输入的exponent是个int型的数值,因此可能为正数,也可能是负数,上述代码只考虑了exponent为正数的情况。
(2) 底数为0,指数为负数,则输入非法。
改进之后代码如下:
【代码1】
C++ Code
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
bool g_bValid = true; bool Equal(double num1, double num2) { double gap = 0.00000001; if (num1 - num2 > -gap && num1 - num2 < gap) return true; return false; } double PowerWithUnsignedExponent(double base, unsigned int exponent) { // T(n) = O(n) double result = 1.0; for (int i = 0; i < exponent; ++i) result *= base; return result; } double Power(double base, int exponent) { g_bValid = true; if(Equal(base, 0.0)) { if (exponent < 0) { g_bValid = false; } return 0.0; } unsigned int absExponent = (unsigned int)exponent; if (exponent < 0) absExponent = (unsigned int)(-exponent); double result = PowerWithUnsignedExponent(base, absExponent); if (exponent < 0) result = 1.0 / result; return result; } |
其时间复杂度为O(n),如何进一步改进?
我们可以用如下公式求a的n次方,其时间复杂度为O(lgn):
n is even: a^n = a^(n/2)*a^(n/2)
n is odd: a^n = a^((n-1)/2)*a^((n-1)/2) * a
改进后代码如下:
【代码2】
C++ Code
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
/* n is even: a^n = a^(n/2)*a^(n/2) n is odd: a^n = a^((n-1)/2)*a^((n-1)/2) * a */ double PowerWithUnsignedExponent2(double base, unsigned int exponent) { // T(n) = O(lgn) if (exponent == 0) return 1; else if (exponent == 1) return base; double result = PowerWithUnsignedExponent2(base, exponent >> 2); result *= result; if (exponent & 0x1) { // exponent is odd result *= base; } return result; } |
【参考】
http://zhedahht.blog.163.com/blog/static/254111742009101563242535/