整理自:
https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1
- 随机森林
1.随机森林
随机森林改变了决策树容易过拟合的问题,这主要是由两个操作所优化的:1、Boostrap从袋内有放回的抽取样本值2、每次随机抽取一定数量的特征(通常为sqr(n))。
分类问题:采用Bagging投票的方式选择类别频次最高的
回归问题:直接取每颗树结果的平均值。
常见参数 | 误差分析 | 优点 | 缺点 |
---|---|---|---|
1、树最大深度 2、树的个数 3、节点上的最小样本数 4、特征数(sqr(n)) |
oob(out-of-bag) 将各个树的未采样样本作为预测样本统计误差作为误分率 |
可以并行计算 不需要特征选择 可以总结出特征重要性 可以处理缺失数据 不需要额外设计测试集 |
在回归上不能输出连续结果 |