import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed(1) # fake data x = torch.unsqueeze(torch.linspace(-1,1,100),dim=1) y = x.pow(2) + 0.2 * torch.rand(x.size()) x, y = Variable(x,requires_grad=False), Variable(y,requires_grad=False) def save(): net1 = torch.nn.Sequential( torch.nn.Linear(1, 10), torch.nn.ReLU(), torch.nn.Linear(10, 1) ) optimizer = torch.optim.SGD(net1.parameters(), lr=0.5) loss_func = torch.nn.MSELoss() for t in range(100): prediction = net1(x) loss = loss_func(prediction, y) optimizer.zero_grad() loss.backward() optimizer.step() plt.figure(1,figsize=(10,3)) plt.subplot(131) plt.title('Net1') plt.scatter(x.data.numpy(),y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(),'r-',lw=5) torch.save(net1, 'net.pkl') # 保存整个网络,包括整个计算图 torch.save(net1.state_dict(), 'net_params.pkl') # 只保存网络中的参数 (速度快, 占内存少) def restore_net(): net2 = torch.load('net.pkl') prediction = net2(x) plt.subplot(132) plt.title('Net2') plt.scatter(x.data.numpy(),y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(),'r-',lw=5) def restore_params(): net3 = torch.nn.Sequential( torch.nn.Linear(1, 10), torch.nn.ReLU(), torch.nn.Linear(10, 1) ) net3.load_state_dict(torch.load('net_params.pkl')) prediction = net3(x) plt.subplot(133) plt.title('Net3') plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) # 将保存的参数复制到 net3 plt.show() save() restore_net() restore_params()
结果和莫烦的不一样,但是找不到问题的所在,,。。。