zoukankan      html  css  js  c++  java
  • 2020.9.1

    星际旅行

    https://www.luogu.com.cn/problem/P4189
    题目:且每个星球的(H_i)大于等于与该星球直接相连的星球数(即度数)。
    想到先从根到所有点都走一遍,然后贪心地考虑u到v的转移。

    #include <bits/stdc++.h>
    using namespace std;
    namespace MAIN {
    	int n, h[50005], ans, ret[50005], son[50005];
    	vector<int> G[50005];
    	inline int read() {
    		int x = 0; char c = getchar();
    		while (c < '0' || c > '9') c = getchar();
    		while (c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
    		return x;
    	}
    	void dfs(int u, int fa) {
    		for (int i = 0; i < G[u].size(); ++i) {
    			int v = G[u][i];
    			if (v == fa) continue;
    			dfs(v, u);
    			int x = min(h[u], h[v]);
    			h[u] -= x, h[v] -= x;
    			ans += x * 2;
    			if (h[v]) son[u] = v;
    		}
    	}
    	void get(int u, int fa) {
    		ret[u] = ans;
    		for (int i = 0; i < G[u].size(); ++i) {
    			int v = G[u][i], t;
    			if (v == fa) continue;
    			if (h[u]) --h[u], ++ans, t = 1;
    			else if (son[v]) --h[son[v]], ++ans, t = 2;
    			else ++h[v], --ans, t = 3;
    			get(v, u);
    			if (t == 1) ++h[u], --ans;
    			else if (t == 2) ++h[son[v]], --ans;
    			else --h[v], ++ans;
    		}
    	}
    	inline int main() {
    		n = read();
    		for (int i = 1; i <= n; ++i) h[i] = read();
    		for (int i = 1; i < n; ++i) {
    			int u = read() + 1, v = read() + 1;
    			G[u].push_back(v);
    			G[v].push_back(u);
    			--h[u], --h[v];
    			ans += 2;
    		}
    		dfs(1, 0);
    		get(1, 0);
    		for (int i = 1; i <= n; ++i) printf("%d
    ", ret[i]);
    		return 0;
    	}
    } int main() { return MAIN::main(); }
    

    产品销售

    https://www.luogu.com.cn/problem/P4217
    满足需求,并且耗费最少,考虑用模拟费用流。研究图的结构,发现是类似于
    avar
    因为费用流中一定要流的边的增广的先后不影响答案,且和S、T连的边不会退流,考虑从左到右增广。
    1.从左到右的边不会变,用直接维护最小值和位置就好了。
    2.从右到左的边会出现反边(由之前的点从左到右增广产生)。显然最短路会先走负权边,所以只需一个线段树支持区间修改,最小值查询即可。当转移的点在边i左边时i的流量只会增加,在i右边时只会减小,所以一条边正负转化的次数是(O(1))的,再建一颗线段树维护是否有边正负变化即可。

    #include <bits/stdc++.h>
    using namespace std;
    namespace MAIN {
    	int n, D[100005], U[100005], P[100005], M[100005], C[100005], sc[100005], sm[100005];
    	long long ans;
    	inline int read() {
    		int x = 0; char c = getchar();
    		while (c < '0' || c > '9') c = getchar();
    		while (c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
    		return x;
    	}
    	namespace tree1 {
    		pair<int, int> t[400005];
    		void build(int p, int l, int r) {
    			if (l == r) { t[p] = make_pair(sc[l] + P[l], l); return; }
    			int mid = l + r >> 1;
    			build(p << 1, l, mid);
    			build(p << 1 | 1, mid + 1, r);
    			t[p] = min(t[p << 1], t[p << 1 | 1]);
    		}
    		pair<int, int> query(int p, int l, int r, int L, int R) {
    			if (l > R || L > r || L > R) return make_pair(2e9, -1);
    			if (L <= l && r <= R) return t[p];
    			int mid = l + r >> 1;
    			return min(query(p << 1, l, mid, L, R), query(p << 1 | 1, mid + 1, r, L, R));
    		}
    		void modify(int p, int l, int r, int x) {
    			if (l == r) { t[p] = make_pair(2e9, l); return; }
    			int mid = l + r >> 1;
    			if (x <= mid) modify(p << 1, l, mid, x);
    			else modify(p << 1 | 1, mid + 1, r, x);
    			t[p] = min(t[p << 1], t[p << 1 | 1]);
    		}
    	}
    	namespace tree3 {
    		pair<int, int> t[400005];
    		int tag[400005];
    		void push(int p) {
    			if (tag[p]) {
    				t[p << 1].first += tag[p];
    				t[p << 1 | 1].first += tag[p];
    				tag[p << 1] += tag[p];
    				tag[p << 1 | 1] += tag[p];
    				tag[p] = 0;
    			}
    		}
    		void build(int p, int l, int r) {
    			if (l == r) { t[p] = make_pair(sm[l] + P[l], l); return; }
    			int mid = l + r >> 1;
    			build(p << 1, l, mid);
    			build(p << 1 | 1, mid + 1, r);
    			t[p] = min(t[p << 1], t[p << 1 | 1]);			 
    		}
    		void add(int p, int l, int r, int L, int R, int x) {
    			if (l > R || L > r || L > R) return;
    			if (L <= l && r <= R) {
    				t[p].first += x;
    				tag[p] += x;
    				return;
    			}
    			push(p);
    			int mid = l + r >> 1;
    			add(p << 1, l, mid, L, R, x);
    			add(p << 1 | 1, mid  + 1, r, L, R, x);
    			t[p] = min(t[p << 1], t[p << 1 | 1]);
    		}
    		pair<int, int> query(int p, int l, int r, int L, int R) {
    			if (l > R || L > r || L > R) return make_pair(2e9, -1);
    			if (L <= l && r <= R) return t[p];
    			push(p);
    			int mid = l + r >> 1;
    			return min(query(p << 1, l, mid, L, R), query(p << 1 | 1, mid + 1, r, L, R));
    		}
    		void modify(int p, int l, int r, int x) {
    			if (l == r) { t[p] = make_pair(2e9, l); return; }
    			int mid = l + r >> 1;
    			push(p);
    			if (x <= mid) modify(p << 1, l, mid, x);
    			else modify(p << 1 | 1, mid + 1, r, x);
    			t[p] = min(t[p << 1], t[p << 1 | 1]);
    		}
    	}
    	namespace tree2 {
    		int tag[400005], Min[400005], Max[400005];
    		inline void push(int p) {
    			if (tag[p]) {
    				tag[p << 1] += tag[p];
    				tag[p << 1 | 1] += tag[p];
    				Min[p << 1] += tag[p];
    				Min[p << 1 | 1] += tag[p];
    				Max[p << 1] += tag[p];
    				Max[p << 1 | 1] += tag[p];
    				tag[p] = 0;
    			}
    		}
    		int query(int p, int l, int r, int L, int R) {
    			if (l > R || L > r || L > R) return 2e9;
    			if (L <= l && r <= R) return Min[p];
    			int mid = l + r >> 1;
    			push(p);
    			return min(query(p << 1, l, mid, L, R), query(p << 1 | 1, mid + 1, r, L, R));
    		}
    		void add(int p, int l, int r, int L, int R, int x) {
    			if (l > R || L > r || L > R) return;
    			if (L <= l && r <= R) {
    				tag[p] += x;
    				Min[p] += x;
    				Max[p] += x;
    				return;
    			}
    			int mid = l + r >> 1;
    			push(p);
    			add(p << 1, l, mid, L, R, x);
    			add(p << 1 | 1, mid + 1, r, L, R, x);
    			Min[p] = min(Min[p << 1], Min[p << 1 | 1]);
    			Max[p] = max(Max[p << 1], Max[p << 1 | 1]);
    		}
    		void change0(int p, int l, int r, int L, int R) {
    			if (l > R || L > r || Max[p] < 2e9 || L > R) return;
    			if (l == r) {
    				tree3::add(1, 1, n, 1, l, -M[l] - C[l + 1]);
    				Min[p] = Max[p] = 0;
    				return;
    			}
    			int mid = l + r >> 1;
    			push(p);
    			change0(p << 1, l, mid, L, R);
    			change0(p << 1 | 1, mid + 1, r, L, R);
    			Min[p] = min(Min[p << 1], Min[p << 1 | 1]);
    			Max[p] = max(Max[p << 1], Max[p << 1 | 1]);
    		}
    		void change1(int p, int l, int r, int L, int R) {
    			if (l > R || L > r || Min[p] || L > R) return;
    			if (l == r) {
    				tree3::add(1, 1, n, 1, l, C[l + 1] + M[l]);
    				Min[p] = Max[p] = 2e9;
    				return;
    			}
    			int mid = l + r >> 1;
    			push(p);
    			change1(p << 1, l, mid, L, R);
    			change1(p << 1 | 1, mid + 1, r, L, R);
    			Min[p] = min(Min[p << 1], Min[p << 1 | 1]);
    			Max[p] = max(Max[p << 1], Max[p << 1 | 1]);
    		}
    		void build() { for (int i = 0; i <= 400000; ++i) Min[i] = Max[i] = 2e9; }
    	}
    	int main() {
    		#ifndef ONLINE_JUDGE
    			freopen("data.in", "r", stdin);
    			freopen("mine.out", "w", stdout);
    		#endif
    		n = read();
    		for (int i = 1; i <= n; ++i) D[i] = read();
    		for (int i = 1; i <= n; ++i) U[i] = read();
    		for (int i = 1; i <= n; ++i) P[i] = read();
    		for (int i = 1; i < n; ++i) M[i] = read();
    		for (int i = 2; i <= n; ++i) {
    			C[i] = read();
    			sc[i] = sc[i - 1] + C[i];
    		}
    		tree1::build(1, 1, n);
    		for (int i = n - 1; i >= 1; --i)
    			sm[i] = sm[i + 1] + M[i];
    		tree3::build(1, 1, n);
    		tree2::build();
    		for (int i = 1; i <= n; ++i) {
    			while (D[i]) {
    				pair<int, int> x = tree1::query(1, 1, n, i, n), y = tree3::query(1, 1, n, 1, i - 1);
    				x.first -= sc[i], y.first -= tree3::query(1, 1, n, i, i).first - P[i];
    				if (x < y) {
    					int flow = min(D[i], U[x.second]);
    					ans += 1ll * flow * x.first;
    					D[i] -= flow, U[x.second] -= flow;
    					if (U[x.second] == 0)
    						tree1::modify(1, 1, n, x.second);
    					tree2::change0(1, 1, n, i, x.second - 1);
    					tree2::add(1, 1, n, i, x.second - 1, flow);
    				} else {
    					int flow = min(min(D[i], U[y.second]), tree2::query(1, 1, n, y.second, i - 1));
    					ans += 1ll * flow * y.first;
    					D[i] -= flow, U[y.second] -= flow;
    					if (U[y.second] == 0)
    						tree3::modify(1, 1, n, y.second);
    					tree2::add(1, 1, n, y.second, i - 1, -flow);
    					tree2::change1(1, 1, n, y.second, i - 1);
    				}
    			}
    		}
    		printf("%lld
    ", ans);
    		return 0;
    	}
    } int main() { MAIN::main(); return 0; }
    

    性能优化

    https://www.luogu.com.cn/problem/P4191
    观察代码发现求(A*B^C)的循环卷积。由单位根反演得只需求A、B、C的长度为n的dft序列即可。
    由已知((n + 1))的约数很小,fft把n分成d份即可。

    #include <bits/stdc++.h>
    using namespace std;
    namespace MAIN {
    	int mod, n, C, g, a[500005], b[500005], aa[500005], c[10][500005];
    	vector<int> fac;
    	inline int read() {
    		int x = 0; char c = getchar();
    		while (c < '0' || c > '9') c = getchar();
    		while (c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
    		return x;
    	}
    	inline int fpow(int a, int b) {
    		int ret = 1;
    		for (; b; b >>= 1, a = 1ll * a * a % mod)
    			if (b & 1)
    				ret = 1ll * ret * a % mod;
    		return ret;
    	}
    	inline int getgen() {
    		vector<int> v;
    		for (int i = 2; i < mod - 1; ++i)
    			if ((mod - 1) % i == 0)
    				v.push_back(i);
    		for (int i = 2; ; ++i) {
    			bool flag = true;
    			for (const int &x : v)
    				if (fpow(i, x) == 1) {
    					flag = false;
    					break;
    				}
    			if (flag) return i;
    		}
    	}
    	inline void getfac() {
    		for (int i = 2, x = n; i <= 10; ++i) {
    			while (x % i == 0) {
    				fac.push_back(i);
    				x /= i;
    			}
    		}
    	}
    	void fft(int n, int *a, int t, int dep) {
    		if (n == 1) return;
    		int r = t == 1 ? fpow(g, (mod - 1) / n) : fpow(fpow(g, (mod - 1) / n), mod - 2);
    		int c[10][n / fac[dep]];
    		for (int i = 0; i < fac[dep]; ++i) {
    			for (int j = 0; j < n / fac[dep]; ++j)
    				c[i][j] = a[j * fac[dep] + i];
    			fft(n / fac[dep], c[i], t, dep + 1);
    		}
    		for (int i = 0, wi = 1; i < n; ++i, wi = 1ll * wi * r % mod) {
    			a[i] = 0;
    			for (int j = 0, w = 1; j < fac[dep]; ++j, w = 1ll * w * wi % mod)
    				a[i] = (a[i] + 1ll * w * c[j][i % (n / fac[dep])]) % mod;
    		}
    	}
    	int main() {
    		n = read(), C = read(), mod = n + 1, g = getgen(), getfac();
    		for (int i = 0; i < n; ++i) a[i] = read();
    		for (int i = 0; i < n; ++i) b[i] = read();
    		fft(n, a, 1, 0);
    		fft(n, b, 1, 0);
    		for (int i = 0; i < n; ++i) a[i] = 1ll * a[i] * fpow(b[i], C) % mod;
    		fft(n, a, -1, 0);
    		for (int i = 0, inv = fpow(n, mod - 2); i < n; ++i) printf("%d
    ", 1ll * a[i] * inv % mod);
    		return 0;
    	}
    } int main() { MAIN::main(); return 0; }
    

    珠宝商

    https://www.luogu.com.cn/problem/P4218
    看到求所有路径的和,容易想到点分治、后缀自动机。发现对于每个(u)对答案的贡献为
    (sumlimits_{p=1}^msumlimits_{a}sumlimits_{b}[a到u在模式串的结束位置为p]且[u到b在模式串的开始位置为p])
    发现右边的式子和左边的式子是同理的,只需把字符串翻转一下即可。
    考虑(sumlimits_{a}[a到u在模式串的结束位置为p])
    设在当前自动机上的节点为x,只需处理出在当前节点的前面加字符c的转移即可(一般是往后加)
    1. 长度<val[x], 只需判断前一个是否是c即可
    2. 长度=val[x], 通过x在parent树上的儿子来转移(儿子的val比父亲大)
    复杂度是假的,菊花图就爆了。感觉可以再用数据结构维护一下,不写了:)

    #include <bits/stdc++.h>
    using namespace std;
    namespace MAIN {
    	vector<int> G[50005];
    	bool flag[50005];
    	int n, m, S, root, mxs[50005], pos1[50005], pos2[50005], W;
    	char a[50005], s[50005];
    	long long ans;
    	struct SAM {
    		int val[100005], par[100005], go[100005][26], root, ncnt, last, R[100005], s[50005], siz[100005], fr[100005][26], js[50005], id[100005], num[100005];
    		SAM() { root = ncnt = last = 1; }
    		inline void extend(int w) {
    			int p = last, np = ++ncnt;
    			val[np] = val[p] + 1;
    			R[np] = val[np];
    			siz[np] = 1;
    			for (; p && go[p][w] == 0; p = par[p]) go[p][w] = np;
    			if (p == 0) par[np] = root;
    			else {
    				int q = go[p][w];
    				if (val[q] == val[p] + 1) par[np] = q;
    				else {
    					int nq = ++ncnt;
    					val[nq] = val[p] + 1;
    					memcpy(go[nq], go[q], sizeof(go[q]));
    					par[nq] = par[q];
    					par[q] = nq;
    					par[np] = nq;
    					for (; p && go[p][w] == q; p = par[p]) go[p][w] = nq;
    				}
    			}
    			last = np;
    		}
    		inline void pre() {
    			for (int i = 1; i <= ncnt; ++i) ++js[val[i]];
    			for (int i = 1; i <= m; ++i) js[i] += js[i - 1];
    			for (int i = 1; i <= ncnt; ++i) id[js[val[i]]--] = i;
    			for (int i = ncnt; i >= 1; --i) {
    				int u = id[i];
    				siz[par[u]] += siz[u];
    				R[par[u]] = R[u];
    				fr[par[u]][s[R[u] - val[par[u]]]] = u;
    			}
    		}
    		inline void calc(int u, int fa, int p, int len) {
    			if (len == val[p]) p = fr[p][a[u]];
    			else if (s[R[p] - len] != a[u]) p = 0;
    			if (p == 0) return;
    			++num[p], ++len;
    			for (auto &v : G[u])
    				if (!flag[v] && v != fa)
    					calc(v, u, p, len);
    		}
    		inline void pushdown() {
    			for (int i = 1; i <= ncnt; ++i)
    				num[id[i]] += num[par[id[i]]];
    		}
    	} s1, s2;
    	inline int read() {
    		int x = 0; char c = getchar();
    		while (c < '0' || c > '9') c = getchar();
    		while (c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
    		return x;
    	}
    	inline void getrt(int u) {
    		function<int(int, int)> count = [&](int u, int fa) {
    			int siz = 1;
    			for (auto &v : G[u]) {
    				if (flag[v] || v == fa) continue;
    				siz += count(v, u);
    			}
    			return siz;
    		};
    		S = count(u, 0), root = -1;
    		function<int(int, int)> find = [&](int u, int fa) {
    			int siz = 1;
    			for (auto &v : G[u]) {
    				if (flag[v] || v == fa) continue;
    				siz += find(v, u);
    			}
    			mxs[u] = max(siz, S - siz);
    			if (root == -1 || mxs[u] < mxs[root]) root = u;
    			return siz;
    		};
    		find(u, 0);
    	}
    	inline void calc(int u, int fa, int op) {
    		memset(s1.num, 0, sizeof(s1.num));
    		memset(s2.num, 0, sizeof(s2.num));
    		if (op == 1) {
    			s1.calc(u, 0, 1, 0);
    			s2.calc(u, 0, 1, 0);
    		} else {
    			s1.calc(u, fa, s1.go[1][a[fa]], 1);
    			s2.calc(u, fa, s2.go[1][a[fa]], 1);
    		}
    		s1.pushdown();
    		s2.pushdown();
    		for (int i = 1; i <= m; ++i)
    			ans += op * s1.num[pos1[i]] * s2.num[pos2[m + 1 - i]];
    	}
    	void div(int u) {
    		if (S <= W) {
    			function<void(int, int)> meiju = [&](int u, int fa) {
    				function<void(int, int, int)> work = [&](int u, int fa, int p) {
    					if (p == 0) return;
    					ans += s1.siz[p];
    					for (auto &v : G[u])
    						if (!flag[v] && v != fa)
    							work(v, u, s1.go[p][a[v]]);
    				};
    				work(u, 0, s1.go[1][a[u]]);
    				for (auto &v : G[u])
    					if (!flag[v] && v != fa)
    						meiju(v, u);
    			};
    			meiju(u, 0);
    			return;
    		}
    		flag[u] = 1;
    		calc(u, u, 1);
    		for (auto &v : G[u]) {
    			if (flag[v]) continue;
    			calc(v, u, -1);
    			getrt(v);
    			div(root);
    		}		
    	}
    	inline int main() {
    		n = read(), m = read(), W = sqrt(n);
    		for (int i = 1; i < n; ++i) {
    			int u = read(), v = read();
    			G[u].push_back(v);
    			G[v].push_back(u);
    		}
    		scanf("%s", a + 1);
    		for (int i = 1; i <= n; ++i) a[i] -= 'a';
    		scanf("%s", s + 1);
    		for (int i = 1; i <= m; ++i) s[i] -= 'a';
    		for (int i = 1; i <= m; ++i) s1.extend(s[i]), pos1[i] = s1.last, s1.s[i] = s[i];
    		for (int i = 1; i <= m; ++i) s2.extend(s[m + 1 - i]), pos2[i] = s2.last, s2.s[i] = s[m + 1 - i];
    		s1.pre(), s2.pre();
    		getrt(1);
    		div(root);
    		printf("%lld
    ", ans);
    		return 0;
    	}
    } int main() { return MAIN::main(); }
    

    三国围棋擂台赛

    https://www.luogu.com.cn/problem/P4190
    很明显的状压dp,注意先把每队的第一个人手算出来,再dp。

    #include <bits/stdc++.h>
    using namespace std;
    namespace MAIN {
    	double dp[65][65][65][3][3][8], a_b[10][10], a_c[10][10], b_c[10][10], ans;
    	int n;
    	inline double min(const double &x, const double &y) { return x < y ? x : y; }
    	inline double max(const double &x, const double &y) { return x > y ? x : y; }
    	double fun(int sa, int sb, int sc, int x, int y, int l) {
    		if (sa == 0 && x != 0) return 0;
    		if (sb == 0 && sc == 0 && x == 0) return 1;
    		if (dp[sa][sb][sc][x][y][l] > -1) return dp[sa][sb][sc][x][y][l];
    		double ret;
    		if (x == 0) {
    			if (sc == 0 || (sb != 0 && y == 1)) {
    				ret = 1;
    				for (int i = 1; i < n; ++i)
    					if (sb >> i - 1 & 1)
    						ret = min(ret, a_b[l][i] * fun(sa, sb ^ 1 << i - 1, sc, 0, 2, l) + (1 - a_b[l][i]) * fun(sa, sb ^ 1 << i - 1, sc, 1, 2, i));
    			} else {
    				ret = 1;				
    				for (int i= 1; i < n; ++i)
    					if (sc >> i - 1 & 1)
    						ret = min(ret, a_c[l][i] * fun(sa, sb, sc ^ 1 << i - 1, 0, 1, l) + (1 - a_c[l][i]) * fun(sa, sb, sc ^ 1 << i - 1, 2, 1, i));
    
    			}
    		} else if (x == 1) {
    			if (sc == 0 || (sa != 0 && y == 0)) {
    				ret = 0;
    				for (int i = 1; i < n; ++i)
    					if (sa >> i - 1 & 1)
    						ret = max(ret, a_b[i][l] * fun(sa ^ 1 << i - 1, sb, sc, 0, 2, i) + (1 - a_b[i][l]) * fun(sa ^ 1 << i - 1, sb, sc, 1, 2, l)); 
    			} else {
    				ret = 1;
    				for (int i = 1; i < n; ++i)
    					if (sc >> i - 1 & 1)
    						ret = min(ret, b_c[l][i] * fun(sa, sb, sc ^ 1 << i - 1, 1, 0, l) + (1 - b_c[l][i]) * fun(sa, sb, sc ^ 1 << i - 1, 2, 0, i));
    			}
    		} else {
    			if (sb == 0 || (sa != 0 && y == 0)) {
    				ret = 0;
    				for (int i = 1; i < n; ++i)
    					if (sa >> i - 1 & 1)
    						ret = max(ret, a_c[i][l] * fun(sa ^ 1 << i - 1, sb, sc, 0, 1, i) + (1 - a_c[i][l]) * fun(sa ^ 1 << i - 1, sb, sc, 2, 1, l));
    			} else {
    				ret = 1;
    				for (int i = 1; i < n; ++i)
    					if (sb >> i - 1 & 1)
    						ret = min(ret, b_c[i][l] * fun(sa, sb ^ 1 << i - 1, sc, 1, 0, i) + (1 - b_c[i][l]) * fun(sa, sb ^ 1 << i - 1, sc, 2, 0, l));
    			}
    		}
    		return dp[sa][sb][sc][x][y][l] = ret;
    	}
    	inline int main() {
    		scanf("%d", &n);
    		for (int i = 1; i <= n; ++i)
    			for (int j = 1; j <= n; ++j)
    				scanf("%lf", &a_b[i][j]);
    		for (int i = 1; i <= n; ++i)
    			for (int j = 1; j <= n; ++j)
    				scanf("%lf", &a_c[i][j]);
    		for (int i = 1; i <= n; ++i)
    			for (int j = 1; j <= n; ++j)
    				scanf("%lf", &b_c[i][j]);
    		int st = (1 << n - 1) - 1;
    		for (int i = 0; i <= st; ++i)
    			for (int j = 0; j <= st; ++j)
    				for (int k = 0; k <= st; ++k)
    					for (int x = 0; x < 3; ++x)
    						for (int y = 0; y < 3; ++y)
    							for (int l = 1; l <= n; ++l)
    								dp[i][j][k][x][y][l] = -1;
    		ans += 1.0 / 3 * (a_b[n][n] * (a_c[n][n] * fun(st, st, st, 0, 1, n) + (1 - a_c[n][n]) * fun(st, st, st, 2, 1, n)) +
    						(1 - a_b[n][n]) * (b_c[n][n] * fun(st, st, st, 1, 0, n) + (1 - b_c[n][n]) * fun(st, st, st, 2, 0, n)));
    		ans += 1.0 / 3 * (a_c[n][n] * (a_b[n][n] * fun(st, st, st, 0, 2, n) + (1 - a_b[n][n]) * fun(st, st, st, 1, 2, n)) +
    						(1 - a_c[n][n]) * (b_c[n][n] * fun(st, st, st, 1, 0, n) + (1 - b_c[n][n]) * fun(st, st, st, 2, 0, n)));
    		ans += 1.0 / 3 * (b_c[n][n] * (a_b[n][n] * fun(st, st, st, 0, 2, n) + (1 - a_b[n][n]) * fun(st, st, st, 1, 2, n)) +
    						(1 - b_c[n][n]) * (a_c[n][n] * fun(st, st, st, 0, 1, n) + (1 - a_c[n][n]) * fun(st, st, st, 2, 1, n)));
    		printf("%.6lf
    ", ans);
    		return 0;
    	}
    } int main() { return MAIN::main(); return 0; }
    
  • 相关阅读:
    汉语-成语:鳏寡孤惸
    汉语-汉字:谶
    汉语-汉字:彘
    汉语-汉字:齑、齏
    mac下配置adb
    常见的开发语言(或IT技术)一览
    SurfaceView的经典写法
    HDU4499 Cannon DFS 回溯的应用
    什么是Pro*C/C++,嵌入式SQL,第一个pro*c程序,pro*c++,Makefile,Proc增删改查
    Cocos开发中性能优化工具介绍之使用Windows任务管理器
  • 原文地址:https://www.cnblogs.com/herald/p/13472200.html
Copyright © 2011-2022 走看看