zoukankan      html  css  js  c++  java
  • 2020.11.2

    (mathcal{A})

    (egin{aligned}sum_{i=0}^negin{Bmatrix} n \ i end{Bmatrix}i!end{aligned})(egin{aligned}sum_{i=0}^negin{Bmatrix} n \ i end{Bmatrix}i!iend{aligned})

    (egin{aligned}f(x)&=sum_{n geq 0}frac{x^n}{n!}sum_{i=0}^negin{Bmatrix} n \ i end{Bmatrix}i!\&=sum_{igeq0}sum_{ngeq0}frac{x^n}{n!}egin{Bmatrix} n \ i end{Bmatrix}i!\&=sum_{igeq0}sum_{ngeq0}frac{x^n}{n!}sum_{kgeq0}(-1)^kinom{i}{k}(i-k)^n\&=sum_{igeq0}sum_{k=0}^i(-1)^kinom{i}{i-k}sum_{ngeq0}frac{x^n}{n!}(i-k)^n\&=sum_{igeq0}sum_{k^*=0}^i(-1)^{i-k}inom{i}{k}sum_{ngeq0}frac{(kx)^n}{n!}\&=sum_{igeq0}sum_{k=0}^i(-1)^{i-k}inom{i}{k}(e^x)^k\&=sum_{igeq0}(-1+e^x)^i\&=frac{1}{2-e^x}end{aligned})

    同理(g(x)=cfrac{e^x-1}{(2-e^x)^2})

  • 相关阅读:
    SpringMVC扩展
    反射机制
    python day9
    python day8
    python day7
    python day6
    python day4
    python day3
    python day2
    python day1
  • 原文地址:https://www.cnblogs.com/herald/p/13915460.html
Copyright © 2011-2022 走看看