zoukankan      html  css  js  c++  java
  • Mask_RCNN测试自己的模型(练习)


    # coding: utf-8

    # In[323]:


    import os
    import sys
    import random
    import math
    import numpy as np
    import skimage.io
    import matplotlib
    import matplotlib.pyplot as plt
    import cv2
    import time
    from mrcnn.config import Config
    from datetime import datetime


    # In[324]:


    # Root directory of the project
    ROOT_DIR = os.getcwd()

    # Import Mask RCNN
    sys.path.append(ROOT_DIR) # To find local version of the library
    from mrcnn import utils
    import mrcnn.model as modellib
    from mrcnn import visualize
    # Import COCO config
    sys.path.append(os.path.join(ROOT_DIR, "coco/")) # To find local version
    from samples.coco import coco


    # Directory to save logs and trained model
    MODEL_DIR = os.path.join(ROOT_DIR, "logs-test")

    # Local path to trained weights file
    COCO_MODEL_PATH = os.path.join(MODEL_DIR ,"mask_rcnn_shapes_0140.h5")
    #COCO_MODEL_PATH = os.path.join(MODEL_DIR ,"mask_rcnn_coco.h5")
    # Download COCO trained weights from Releases if needed
    if not os.path.exists(COCO_MODEL_PATH):
      utils.download_trained_weights(COCO_MODEL_PATH)
      print("cuiwei***********************")

    # Directory of images to run detection on
    IMAGE_DIR = os.path.join(ROOT_DIR, "images201902")


    # In[325]:


    class ShapesConfig(Config):
      """Configuration for training on the toy shapes dataset.
      Derives from the base Config class and overrides values specific
      to the toy shapes dataset.
      """
      # Give the configuration a recognizable name
      NAME = "shapes"

      # Train on 1 GPU and 8 images per GPU. We can put multiple images on each
      # GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
      GPU_COUNT = 1
      IMAGES_PER_GPU = 1

      # Number of classes (including background)
      NUM_CLASSES = 1 + 2 # background + 3 shapes

      # Use small images for faster training. Set the limits of the small side
      # the large side, and that determines the image shape.
      IMAGE_MIN_DIM = 80
      IMAGE_MAX_DIM = 512

      # Use smaller anchors because our image and objects are small
      RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6) # anchor side in pixels
      #RPN_ANCHOR_SCALES = (128 * 6, 256 * 6, 512 * 6)
      #RPN_ANCHOR_SCALES = (32 * 6, 64 * 6, 128 * 6, 256 * 6, 512 * 6)

      # Reduce training ROIs per image because the images are small and have
      # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
      TRAIN_ROIS_PER_IMAGE =100

      # Use a small epoch since the data is simple
      STEPS_PER_EPOCH = 100

      # use small validation steps since the epoch is small
      VALIDATION_STEPS = 50


    # In[326]:


    #import train_tongue
    #class InferenceConfig(coco.CocoConfig):
    class InferenceConfig(ShapesConfig):
      # Set batch size to 1 since we'll be running inference on
      # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
      GPU_COUNT = 1
      IMAGES_PER_GPU = 1


    # In[327]:


    config = InferenceConfig()

    model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)


    # Create model object in inference mode.
    model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)

    # Load weights trained on MS-COCO
    model.load_weights(COCO_MODEL_PATH, by_name=True)


    # In[328]:


    # COCO Class names
    # Index of the class in the list is its ID. For example, to get ID of
    # the teddy bear class, use: class_names.index('teddy bear')
    class_names = ['BG', 'human','ladder']
    # Load a random image from the images folder
    file_names = next(os.walk(IMAGE_DIR))[2]
    image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))


    a=datetime.now()
    # Run detection
    results = model.detect([image], verbose=1)
    b=datetime.now()
    # Visualize results
    print("time:",(b-a).seconds)
    r = results[0]



    visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],
                  class_names, r['scores'])

  • 相关阅读:
    SpringMVC什么时候配置 视图解析器
    打印数组的5种方式
    集合区别(list和linkedlist的区别)?
    回归测试
    dom4j组装xml 以及解析xml
    java操作文件创建、删除
    powerdesigner里的table背景色是不是可以修改的?
    如何设定editplus为txt默认打开程序?
    PowerDesigner怎样才能在修改表的字段Name的时候Code不自动跟着变
    PowerDesigner怎么调出工具箱?
  • 原文地址:https://www.cnblogs.com/herd/p/10477157.html
Copyright © 2011-2022 走看看