zoukankan      html  css  js  c++  java
  • LSTM_Model

    #!/usr/bin/python
    # -*- coding: utf-8 -*-

    import tensorflow as tf

    class TRNNConfig(object):
    """RNN配置参数"""

    # 模型参数
    embedding_dim = 64 # 词向量维度
    seq_length = 600 # 序列长度
    num_classes = 10 # 类别数
    vocab_size = 5000 # 词汇表达小

    num_layers= 2 # 隐藏层层数
    hidden_dim = 128 # 隐藏层神经元
    rnn = 'gru' # lstm 或 gru

    dropout_keep_prob = 0.8 # dropout保留比例
    learning_rate = 1e-3 # 学习率

    batch_size = 128 # 每批训练大小
    num_epochs = 10 # 总迭代轮次

    print_per_batch = 100 # 每多少轮输出一次结果
    save_per_batch = 10 # 每多少轮存入tensorboard


    class TextRNN(object):
    """文本分类,RNN模型"""
    def __init__(self, config):
    self.config = config

    # 三个待输入的数据
    self.input_x = tf.placeholder(tf.int32, [None, self.config.seq_length], name='input_x')
    self.input_y = tf.placeholder(tf.float32, [None, self.config.num_classes], name='input_y')
    self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')

    self.rnn()

    def rnn(self):
    """rnn模型"""

    def lstm_cell(): # lstm核
    return tf.contrib.rnn.BasicLSTMCell(self.config.hidden_dim, state_is_tuple=True)

    def gru_cell(): # gru核
    return tf.contrib.rnn.GRUCell(self.config.hidden_dim)

    def dropout(): # 为每一个rnn核后面加一个dropout层
    if (self.config.rnn == 'lstm'):
    cell = lstm_cell()
    else:
    cell = gru_cell()
    return tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=self.keep_prob)

    # 动作映射
    with tf.device('/cpu:0'):
    embedding = tf.get_variable('embedding', [self.config.vocab_size, self.config.embedding_dim])
    embedding_inputs = tf.nn.embedding_lookup(embedding, self.input_x)

    with tf.name_scope("rnn"):
    # 多层rnn网络
    cells = [dropout() for _ in range(self.config.num_layers)]
    rnn_cell = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=True)

    _outputs, _ = tf.nn.dynamic_rnn(cell=rnn_cell, inputs=embedding_inputs, dtype=tf.float32)
    last = _outputs[:, -1, :] # 取最后一个时序输出作为结果

    with tf.name_scope("score"):
    # 全连接层,后面接dropout以及relu激活
    fc = tf.layers.dense(last, self.config.hidden_dim, name='fc1')
    fc = tf.contrib.layers.dropout(fc, self.keep_prob)
    fc = tf.nn.relu(fc)

    # 分类器
    self.logits = tf.layers.dense(fc, self.config.num_classes, name='fc2')
    # 预测类别
    self.y_pred_cls = tf.argmax(tf.nn.softmax(self.logits), 1)

    with tf.name_scope("optimize"):
    # 损失函数,交叉熵
    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.input_y)
    #求输入的所有行的预测值的均值
    self.loss = tf.reduce_mean(cross_entropy)
    # 优化器
    self.optim = tf.train.AdamOptimizer(learning_rate=self.config.learning_rate).minimize(self.loss)

    with tf.name_scope("accuracy"):
    # 准确率 其中 self.y_pred_cls为预测的类别
    correct_pred = tf.equal(tf.argmax(self.input_y, 1), self.y_pred_cls)
    #
    self.acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

  • 相关阅读:
    CSS中expression使用简介
    过滤Html标签代码
    ASP.NET上传图片时显示预览
    30分钟搞定.net正则表达式
    DataFormatString格式化
    Js事件大全
    Hibernate关联映射
    动态给下拉框添加选项
    python模块整理文章导航
    python学习笔记文章导航
  • 原文地址:https://www.cnblogs.com/herd/p/10913139.html
Copyright © 2011-2022 走看看