zoukankan      html  css  js  c++  java
  • ZT台式机 Tensorflow配置

    ZT台式机 Tensorflow配置

    1、安装Anaconda  (最好不要安装在C盘)

    安装参考:https://blog.csdn.net/weixin_50888378/article/details/109022585

    2、安装Protoc

    ①解压protoc-3.11.4-win64.zip

    ②配置环境,在桌面上选中“此电脑”,单击右键,在弹出菜单中选择  “属性”,电脑自动打开系统属性面板,在面板左侧菜单栏中选择 “高级系统设置”菜单选项,系统自动打开系统属性配置对话框,点击下面的“配置环境变量(N)...”按钮,在系统变量面板下点击“新建(W)...”按钮,

    变量名:Protoc

    变量值:E:Program Files (x86)protoc-3.11.4-win64

    然后点击“确定”按钮。

    在系统变量里面选中变量名为  Path  的选项,双击,系统自动打开 编辑环境变量面板,在最下面空白行点双击,输入:%Protoc%in,然后点击“确定”按钮。

    依次点击确定按钮关闭刚才打开的窗口,Protoc环境变量配置完毕。

    解压目录下有

    bin

    include

    readme.txt

     上面两步配置完毕以后,在操作系统开始菜单中打开: Anaconda Prompt

     

    (base) C:Userszzt>
    (base) C:Userszzt>
    (base) C:Userszzt>
    (base) C:Userszzt>
    (base) C:Userszzt>E:
    
    (base) E:>
    (base) E:>
    (base) E:>
    (base) E:>
    (base) E:>
    (base) E:>
    (base) E:>
    (base) E:>cd Anaconda3
    
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>conda create -n tf_2021 python=3.7
    Solving environment: done
    
    
    ==> WARNING: A newer version of conda exists. <==
      current version: 4.5.11
      latest version: 4.10.1
    
    Please update conda by running
    
        $ conda update -n base -c defaults conda
    
    
    
    ## Package Plan ##
    
      environment location: C:UserszztAppDataLocalcondacondaenvs	f_2021
    
      added / updated specs:
        - python=3.7
    
    
    The following packages will be downloaded:
    
        package                    |            build
        ---------------------------|-----------------
        certifi-2020.12.5          |   py37haa95532_0         144 KB
        openssl-1.1.1k             |       h2bbff1b_0         5.7 MB
        python-3.7.10              |       h6244533_0        17.4 MB
        vc-14.2                    |       h21ff451_1           8 KB
        setuptools-52.0.0          |   py37haa95532_0         936 KB
        wheel-0.36.2               |     pyhd3eb1b0_0          31 KB
        vs2015_runtime-14.27.29016 |       h5e58377_2         2.2 MB
        ca-certificates-2021.4.13  |       haa95532_1         150 KB
        sqlite-3.35.4              |       h2bbff1b_0         1.2 MB
        pip-21.0.1                 |   py37haa95532_0         2.0 MB
        ------------------------------------------------------------
                                               Total:        29.8 MB
    
    The following NEW packages will be INSTALLED:
    
        ca-certificates: 2021.4.13-haa95532_1
        certifi:         2020.12.5-py37haa95532_0
        openssl:         1.1.1k-h2bbff1b_0
        pip:             21.0.1-py37haa95532_0
        python:          3.7.10-h6244533_0
        setuptools:      52.0.0-py37haa95532_0
        sqlite:          3.35.4-h2bbff1b_0
        vc:              14.2-h21ff451_1
        vs2015_runtime:  14.27.29016-h5e58377_2
        wheel:           0.36.2-pyhd3eb1b0_0
        wincertstore:    0.2-py37_0
    
    Proceed ([y]/n)? y
    
    
    Downloading and Extracting Packages
    certifi-2020.12.5    | 144 KB    | ############################################################################ | 100%
    openssl-1.1.1k       | 5.7 MB    | ############################################################################ | 100%
    python-3.7.10        | 17.4 MB   | ############################################################################ | 100%
    vc-14.2              | 8 KB      | ############################################################################ | 100%
    setuptools-52.0.0    | 936 KB    | ############################################################################ | 100%
    wheel-0.36.2         | 31 KB     | ############################################################################ | 100%
    vs2015_runtime-14.27 | 2.2 MB    | ############################################################################ | 100%
    ca-certificates-2021 | 150 KB    | ############################################################################ | 100%
    sqlite-3.35.4        | 1.2 MB    | ############################################################################ | 100%
    pip-21.0.1           | 2.0 MB    | ############################################################################ | 100%
    Preparing transaction: done
    Verifying transaction: done
    Executing transaction: done
    #
    # To activate this environment, use
    #
    #     $ conda activate tf_2021
    #
    # To deactivate an active environment, use
    #
    #     $ conda deactivate
    
    
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>

    pip install tensorflow

    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>
    (base) E:Anaconda3>conda activate tf_2021
    
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>pip install tensorflow==1.14.0
    Collecting tensorflow==1.14.0
      Downloading tensorflow-1.14.0-cp37-cp37m-win_amd64.whl (68.3 MB)
         |████████████████████████████████| 68.3 MB 226 kB/s
    Collecting keras-applications>=1.0.6
      Using cached Keras_Applications-1.0.8-py3-none-any.whl (50 kB)
    Collecting keras-preprocessing>=1.0.5
      Using cached Keras_Preprocessing-1.1.2-py2.py3-none-any.whl (42 kB)
    Collecting grpcio>=1.8.6
      Downloading grpcio-1.37.0-cp37-cp37m-win_amd64.whl (3.1 MB)
         |████████████████████████████████| 3.1 MB 3.2 MB/s
    Collecting tensorboard<1.15.0,>=1.14.0
      Using cached tensorboard-1.14.0-py3-none-any.whl (3.1 MB)
    Collecting termcolor>=1.1.0
      Using cached termcolor-1.1.0.tar.gz (3.9 kB)
    Collecting wrapt>=1.11.1
      Using cached wrapt-1.12.1.tar.gz (27 kB)
    Collecting gast>=0.2.0
      Using cached gast-0.4.0-py3-none-any.whl (9.8 kB)
    Requirement already satisfied: wheel>=0.26 in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from tensorflow==1.14.0) (0.36.2)
    Collecting protobuf>=3.6.1
      Downloading protobuf-3.15.8-cp37-cp37m-win_amd64.whl (904 kB)
         |████████████████████████████████| 904 kB 3.3 MB/s
    Collecting tensorflow-estimator<1.15.0rc0,>=1.14.0rc0
      Using cached tensorflow_estimator-1.14.0-py2.py3-none-any.whl (488 kB)
    Collecting google-pasta>=0.1.6
      Using cached google_pasta-0.2.0-py3-none-any.whl (57 kB)
    Collecting astor>=0.6.0
      Using cached astor-0.8.1-py2.py3-none-any.whl (27 kB)
    Collecting absl-py>=0.7.0
      Downloading absl_py-0.12.0-py3-none-any.whl (129 kB)
         |████████████████████████████████| 129 kB 3.3 MB/s
    Collecting numpy<2.0,>=1.14.5
      Downloading numpy-1.20.2-cp37-cp37m-win_amd64.whl (13.6 MB)
         |████████████████████████████████| 13.6 MB 3.3 MB/s
    Collecting six>=1.10.0
      Using cached six-1.15.0-py2.py3-none-any.whl (10 kB)
    Collecting h5py
      Downloading h5py-3.2.1-cp37-cp37m-win_amd64.whl (2.7 MB)
         |████████████████████████████████| 2.7 MB 6.8 MB/s
    Collecting markdown>=2.6.8
      Downloading Markdown-3.3.4-py3-none-any.whl (97 kB)
         |████████████████████████████████| 97 kB 2.3 MB/s
    Collecting werkzeug>=0.11.15
      Using cached Werkzeug-1.0.1-py2.py3-none-any.whl (298 kB)
    Requirement already satisfied: setuptools>=41.0.0 in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from tensorboard<1.15.0,>=1.14.0->tensorflow==1.14.0) (52.0.0.post20210125)
    Collecting importlib-metadata
      Downloading importlib_metadata-3.10.1-py3-none-any.whl (14 kB)
    Collecting cached-property
      Using cached cached_property-1.5.2-py2.py3-none-any.whl (7.6 kB)
    Collecting typing-extensions>=3.6.4
      Downloading typing_extensions-3.7.4.3-py3-none-any.whl (22 kB)
    Collecting zipp>=0.5
      Downloading zipp-3.4.1-py3-none-any.whl (5.2 kB)
    Building wheels for collected packages: termcolor, wrapt
      Building wheel for termcolor (setup.py) ... done
      Created wheel for termcolor: filename=termcolor-1.1.0-py3-none-any.whl size=4829 sha256=dc9f1840022adc2c25de6f10bce75748a914c5c35f58719a0532623520772036
      Stored in directory: c:userszztappdatalocalpipcachewheels3fe3ec8a8336ff196023622fbcb36de0c5a5c218cbb24111d1d4c7f2
      Building wheel for wrapt (setup.py) ... done
      Created wheel for wrapt: filename=wrapt-1.12.1-py3-none-any.whl size=19553 sha256=f0cd5e6773786874b563aa1a7c3394a35e7c8561b54cc47fc00730df91614fd6
      Stored in directory: c:userszztappdatalocalpipcachewheels62764caa25851149f3f6d9785f6c869387ad82b3fd37582fa8147ac6
    Successfully built termcolor wrapt
    Installing collected packages: zipp, typing-extensions, six, numpy, importlib-metadata, cached-property, werkzeug, protobuf, markdown, h5py, grpcio, absl-py, wrapt, termcolor, tensorflow-estimator, tensorboard, keras-preprocessing, keras-applications, google-pasta, gast, astor, tensorflow
    Successfully installed absl-py-0.12.0 astor-0.8.1 cached-property-1.5.2 gast-0.4.0 google-pasta-0.2.0 grpcio-1.37.0 h5py-3.2.1 importlib-metadata-3.10.1 keras-applications-1.0.8 keras-preprocessing-1.1.2 markdown-3.3.4 numpy-1.20.2 protobuf-3.15.8 six-1.15.0 tensorboard-1.14.0 tensorflow-1.14.0 tensorflow-estimator-1.14.0 termcolor-1.1.0 typing-extensions-3.7.4.3 werkzeug-1.0.1 wrapt-1.12.1 zipp-3.4.1
    
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>pip install protobuf-compiler
    Collecting protobuf-compiler
      Downloading protobuf_compiler-1.0.20-py3-none-any.whl (8.6 kB)
    Collecting grpcio==1.18.0
      Downloading grpcio-1.18.0-cp37-cp37m-win_amd64.whl (1.5 MB)
         |████████████████████████████████| 1.5 MB 969 kB/s
    Collecting tqdm==4.31.1
      Downloading tqdm-4.31.1-py2.py3-none-any.whl (48 kB)
         |████████████████████████████████| 48 kB 3.2 MB/s
    Collecting colorama==0.3.3
      Downloading colorama-0.3.3.tar.gz (22 kB)
    Requirement already satisfied: termcolor==1.1.0 in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from protobuf-compiler) (1.1.0)
    Collecting grpcio-tools==1.18.0
      Downloading grpcio_tools-1.18.0-cp37-cp37m-win_amd64.whl (1.4 MB)
         |████████████████████████████████| 1.4 MB 3.3 MB/s
    Collecting bleach==2.1.0
      Downloading bleach-2.1-py2.py3-none-any.whl (27 kB)
    Collecting html5lib!=1.0b1,!=1.0b2,!=1.0b3,!=1.0b4,!=1.0b5,!=1.0b6,!=1.0b7,!=1.0b8,>=0.99999999pre
      Downloading html5lib-1.1-py2.py3-none-any.whl (112 kB)
         |████████████████████████████████| 112 kB 6.4 MB/s
    Requirement already satisfied: six in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from bleach==2.1.0->protobuf-compiler) (1.15.0)
    Requirement already satisfied: protobuf>=3.5.0.post1 in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from grpcio-tools==1.18.0->protobuf-compiler) (3.15.8)
    Collecting webencodings
      Downloading webencodings-0.5.1-py2.py3-none-any.whl (11 kB)
    Building wheels for collected packages: colorama
      Building wheel for colorama (setup.py) ... done
      Created wheel for colorama: filename=colorama-0.3.3-py3-none-any.whl size=14317 sha256=29a89e5fdcf429238588b8b43c07db66e23ab858a22d49640fd553e436bf30c9
      Stored in directory: c:userszztappdatalocalpipcachewheelsac429777eb85865f435ca81a91fe4c269471f5b4d50144344868f3b1
    Successfully built colorama
    Installing collected packages: webencodings, html5lib, grpcio, tqdm, grpcio-tools, colorama, bleach, protobuf-compiler
      Attempting uninstall: grpcio
        Found existing installation: grpcio 1.37.0
        Uninstalling grpcio-1.37.0:
          Successfully uninstalled grpcio-1.37.0
    Successfully installed bleach-2.1 colorama-0.3.3 grpcio-1.18.0 grpcio-tools-1.18.0 html5lib-1.1 protobuf-compiler-1.0.20 tqdm-4.31.1 webencodings-0.5.1
    
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>pip install Cython
    Collecting Cython
      Downloading Cython-0.29.23-cp37-cp37m-win_amd64.whl (1.6 MB)
         |████████████████████████████████| 1.6 MB 297 kB/s
    Installing collected packages: Cython
    Successfully installed Cython-0.29.23
    
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>pip install contextlib2
    Collecting contextlib2
      Downloading contextlib2-0.6.0.post1-py2.py3-none-any.whl (9.8 kB)
    Installing collected packages: contextlib2
    Successfully installed contextlib2-0.6.0.post1
    
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>pip install pillow
    Collecting pillow
      Downloading Pillow-8.2.0-cp37-cp37m-win_amd64.whl (2.2 MB)
         |████████████████████████████████| 2.2 MB 297 kB/s
    Installing collected packages: pillow
    Successfully installed pillow-8.2.0
    
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>pip install lxml
    Collecting lxml
      Downloading lxml-4.6.3-cp37-cp37m-win_amd64.whl (3.5 MB)
         |████████████████████████████████| 3.5 MB 3.3 MB/s
    Installing collected packages: lxml
    Successfully installed lxml-4.6.3
    
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>pip install jupyter
    Collecting jupyter
      Downloading jupyter-1.0.0-py2.py3-none-any.whl (2.7 kB)
    Collecting ipykernel
      Downloading ipykernel-5.5.3-py3-none-any.whl (120 kB)
         |████████████████████████████████| 120 kB 284 kB/s
    Collecting jupyter-console
      Downloading jupyter_console-6.4.0-py3-none-any.whl (22 kB)
    Collecting nbconvert
      Downloading nbconvert-6.0.7-py3-none-any.whl (552 kB)
         |████████████████████████████████| 552 kB 1.3 MB/s
    Collecting qtconsole
      Downloading qtconsole-5.0.3-py3-none-any.whl (119 kB)
         |████████████████████████████████| 119 kB 6.4 MB/s
    Collecting ipywidgets
      Downloading ipywidgets-7.6.3-py2.py3-none-any.whl (121 kB)
         |████████████████████████████████| 121 kB 3.3 MB/s
    Collecting notebook
      Downloading notebook-6.3.0-py3-none-any.whl (9.5 MB)
         |████████████████████████████████| 9.5 MB 3.3 MB/s
    Collecting jupyter-client
      Downloading jupyter_client-6.1.12-py3-none-any.whl (112 kB)
         |████████████████████████████████| 112 kB 6.4 MB/s
    Collecting tornado>=4.2
      Downloading tornado-6.1-cp37-cp37m-win_amd64.whl (422 kB)
         |████████████████████████████████| 422 kB 3.2 MB/s
    Collecting ipython>=5.0.0
      Downloading ipython-7.22.0-py3-none-any.whl (785 kB)
         |████████████████████████████████| 785 kB 6.8 MB/s
    Collecting traitlets>=4.1.0
      Downloading traitlets-5.0.5-py3-none-any.whl (100 kB)
         |████████████████████████████████| 100 kB 6.4 MB/s
    Collecting pickleshare
      Downloading pickleshare-0.7.5-py2.py3-none-any.whl (6.9 kB)
    Collecting decorator
      Downloading decorator-5.0.7-py3-none-any.whl (8.8 kB)
    Requirement already satisfied: colorama in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from ipython>=5.0.0->ipykernel->jupyter) (0.3.3)
    Collecting jedi>=0.16
      Downloading jedi-0.18.0-py2.py3-none-any.whl (1.4 MB)
         |████████████████████████████████| 1.4 MB 3.3 MB/s
    Requirement already satisfied: setuptools>=18.5 in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from ipython>=5.0.0->ipykernel->jupyter) (52.0.0.post20210125)
    Collecting prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0
      Downloading prompt_toolkit-3.0.18-py3-none-any.whl (367 kB)
         |████████████████████████████████| 367 kB 6.8 MB/s
    Collecting backcall
      Downloading backcall-0.2.0-py2.py3-none-any.whl (11 kB)
    Collecting pygments
      Downloading Pygments-2.8.1-py3-none-any.whl (983 kB)
         |████████████████████████████████| 983 kB 6.4 MB/s
    Collecting parso<0.9.0,>=0.8.0
      Downloading parso-0.8.2-py2.py3-none-any.whl (94 kB)
         |████████████████████████████████| 94 kB 1.0 MB/s
    Collecting wcwidth
      Downloading wcwidth-0.2.5-py2.py3-none-any.whl (30 kB)
    Collecting ipython-genutils
      Downloading ipython_genutils-0.2.0-py2.py3-none-any.whl (26 kB)
    Collecting widgetsnbextension~=3.5.0
      Downloading widgetsnbextension-3.5.1-py2.py3-none-any.whl (2.2 MB)
         |████████████████████████████████| 2.2 MB 6.4 MB/s
    Collecting nbformat>=4.2.0
      Downloading nbformat-5.1.3-py3-none-any.whl (178 kB)
         |████████████████████████████████| 178 kB 3.3 MB/s
    Collecting jupyterlab-widgets>=1.0.0
      Downloading jupyterlab_widgets-1.0.0-py3-none-any.whl (243 kB)
         |████████████████████████████████| 243 kB 6.4 MB/s
    Collecting jsonschema!=2.5.0,>=2.4
      Downloading jsonschema-3.2.0-py2.py3-none-any.whl (56 kB)
         |████████████████████████████████| 56 kB 2.0 MB/s
    Collecting jupyter-core
      Downloading jupyter_core-4.7.1-py3-none-any.whl (82 kB)
         |████████████████████████████████| 82 kB 482 kB/s
    Requirement already satisfied: importlib-metadata in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets->jupyter) (3.10.1)
    Collecting attrs>=17.4.0
      Downloading attrs-20.3.0-py2.py3-none-any.whl (49 kB)
         |████████████████████████████████| 49 kB 3.2 MB/s
    Requirement already satisfied: six>=1.11.0 in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets->jupyter) (1.15.0)
    Collecting pyrsistent>=0.14.0
      Downloading pyrsistent-0.17.3.tar.gz (106 kB)
         |████████████████████████████████| 106 kB 6.4 MB/s
    Collecting prometheus-client
      Downloading prometheus_client-0.10.1-py2.py3-none-any.whl (55 kB)
         |████████████████████████████████| 55 kB 4.1 MB/s
    Collecting Send2Trash>=1.5.0
      Downloading Send2Trash-1.5.0-py3-none-any.whl (12 kB)
    Collecting terminado>=0.8.3
      Downloading terminado-0.9.4-py3-none-any.whl (14 kB)
    Collecting pyzmq>=17
      Downloading pyzmq-22.0.3-cp37-cp37m-win_amd64.whl (1.2 MB)
         |████████████████████████████████| 1.2 MB 6.4 MB/s
    Collecting jinja2
      Downloading Jinja2-2.11.3-py2.py3-none-any.whl (125 kB)
         |████████████████████████████████| 125 kB 6.8 MB/s
    Collecting argon2-cffi
      Downloading argon2_cffi-20.1.0-cp37-cp37m-win_amd64.whl (42 kB)
         |████████████████████████████████| 42 kB 363 kB/s
    Collecting python-dateutil>=2.1
      Downloading python_dateutil-2.8.1-py2.py3-none-any.whl (227 kB)
         |████████████████████████████████| 227 kB 6.8 MB/s
    Collecting pywin32>=1.0
      Downloading pywin32-300-cp37-cp37m-win_amd64.whl (9.2 MB)
         |████████████████████████████████| 9.2 MB 3.2 MB/s
    Collecting pywinpty>=0.5
      Downloading pywinpty-0.5.7-cp37-cp37m-win_amd64.whl (1.3 MB)
         |████████████████████████████████| 1.3 MB 6.4 MB/s
    Collecting cffi>=1.0.0
      Downloading cffi-1.14.5-cp37-cp37m-win_amd64.whl (178 kB)
         |████████████████████████████████| 178 kB 3.3 MB/s
    Collecting pycparser
      Downloading pycparser-2.20-py2.py3-none-any.whl (112 kB)
         |████████████████████████████████| 112 kB 6.4 MB/s
    Requirement already satisfied: typing-extensions>=3.6.4 in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from importlib-metadata->jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets->jupyter) (3.7.4.3)
    Requirement already satisfied: zipp>=0.5 in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from importlib-metadata->jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets->jupyter) (3.4.1)
    Collecting MarkupSafe>=0.23
      Downloading MarkupSafe-1.1.1-cp37-cp37m-win_amd64.whl (16 kB)
    Collecting defusedxml
      Downloading defusedxml-0.7.1-py2.py3-none-any.whl (25 kB)
    Collecting mistune<2,>=0.8.1
      Downloading mistune-0.8.4-py2.py3-none-any.whl (16 kB)
    Collecting jupyterlab-pygments
      Downloading jupyterlab_pygments-0.1.2-py2.py3-none-any.whl (4.6 kB)
    Collecting testpath
      Downloading testpath-0.4.4-py2.py3-none-any.whl (163 kB)
         |████████████████████████████████| 163 kB 6.4 MB/s
    Collecting nbclient<0.6.0,>=0.5.0
      Downloading nbclient-0.5.3-py3-none-any.whl (82 kB)
         |████████████████████████████████| 82 kB 6.1 MB/s
    Collecting pandocfilters>=1.4.1
      Downloading pandocfilters-1.4.3.tar.gz (16 kB)
    Collecting entrypoints>=0.2.2
      Downloading entrypoints-0.3-py2.py3-none-any.whl (11 kB)
    Requirement already satisfied: bleach in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from nbconvert->jupyter) (2.1)
    Collecting async-generator
      Downloading async_generator-1.10-py3-none-any.whl (18 kB)
    Collecting nest-asyncio
      Downloading nest_asyncio-1.5.1-py3-none-any.whl (5.0 kB)
    Requirement already satisfied: html5lib!=1.0b1,!=1.0b2,!=1.0b3,!=1.0b4,!=1.0b5,!=1.0b6,!=1.0b7,!=1.0b8,>=0.99999999pre in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from bleach->nbconvert->jupyter) (1.1)
    Requirement already satisfied: webencodings in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from html5lib!=1.0b1,!=1.0b2,!=1.0b3,!=1.0b4,!=1.0b5,!=1.0b6,!=1.0b7,!=1.0b8,>=0.99999999pre->bleach->nbconvert->jupyter) (0.5.1)
    Collecting qtpy
      Downloading QtPy-1.9.0-py2.py3-none-any.whl (54 kB)
         |████████████████████████████████| 54 kB 1.1 MB/s
    Building wheels for collected packages: pyrsistent, pandocfilters
      Building wheel for pyrsistent (setup.py) ... done
      Created wheel for pyrsistent: filename=pyrsistent-0.17.3-cp37-cp37m-win_amd64.whl size=55871 sha256=ca43d3b92456d91bd189bad6e48f27eef7908cee0572d03154a591933a4d9702
      Stored in directory: c:userszztappdatalocalpipcachewheelsa552f71258a1d7b3c8cbe1ee53f9314c6f65f20385481eaee573cc5
      Building wheel for pandocfilters (setup.py) ... done
      Created wheel for pandocfilters: filename=pandocfilters-1.4.3-py3-none-any.whl size=7992 sha256=9033ec8aa079b66ed1671e688b32a7d50ca91af50deb2c21ac27d3b170592227
      Stored in directory: c:userszztappdatalocalpipcachewheels428134545dc2fbf0e9137811e901108d37fc04650e81d48f97078000
    Successfully built pyrsistent pandocfilters
    Installing collected packages: ipython-genutils, traitlets, pywin32, pyrsistent, attrs, wcwidth, tornado, pyzmq, python-dateutil, parso, jupyter-core, jsonschema, pygments, pycparser, prompt-toolkit, pickleshare, nest-asyncio, nbformat, MarkupSafe, jupyter-client, jedi, decorator, backcall, async-generator, testpath, pywinpty, pandocfilters, nbclient, mistune, jupyterlab-pygments, jinja2, ipython, entrypoints, defusedxml, cffi, terminado, Send2Trash, prometheus-client, nbconvert, ipykernel, argon2-cffi, notebook, widgetsnbextension, qtpy, jupyterlab-widgets, qtconsole, jupyter-console, ipywidgets, jupyter
    Successfully installed MarkupSafe-1.1.1 Send2Trash-1.5.0 argon2-cffi-20.1.0 async-generator-1.10 attrs-20.3.0 backcall-0.2.0 cffi-1.14.5 decorator-5.0.7 defusedxml-0.7.1 entrypoints-0.3 ipykernel-5.5.3 ipython-7.22.0 ipython-genutils-0.2.0 ipywidgets-7.6.3 jedi-0.18.0 jinja2-2.11.3 jsonschema-3.2.0 jupyter-1.0.0 jupyter-client-6.1.12 jupyter-console-6.4.0 jupyter-core-4.7.1 jupyterlab-pygments-0.1.2 jupyterlab-widgets-1.0.0 mistune-0.8.4 nbclient-0.5.3 nbconvert-6.0.7 nbformat-5.1.3 nest-asyncio-1.5.1 notebook-6.3.0 pandocfilters-1.4.3 parso-0.8.2 pickleshare-0.7.5 prometheus-client-0.10.1 prompt-toolkit-3.0.18 pycparser-2.20 pygments-2.8.1 pyrsistent-0.17.3 python-dateutil-2.8.1 pywin32-300 pywinpty-0.5.7 pyzmq-22.0.3 qtconsole-5.0.3 qtpy-1.9.0 terminado-0.9.4 testpath-0.4.4 tornado-6.1 traitlets-5.0.5 wcwidth-0.2.5 widgetsnbextension-3.5.1
    
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>pip install matplotlib
    Collecting matplotlib
      Downloading matplotlib-3.4.1-cp37-cp37m-win_amd64.whl (7.1 MB)
         |████████████████████████████████| 7.1 MB 3.3 MB/s
    Requirement already satisfied: pillow>=6.2.0 in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from matplotlib) (8.2.0)
    Collecting pyparsing>=2.2.1
      Downloading pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)
         |████████████████████████████████| 67 kB 2.8 MB/s
    Requirement already satisfied: python-dateutil>=2.7 in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from matplotlib) (2.8.1)
    Collecting cycler>=0.10
      Downloading cycler-0.10.0-py2.py3-none-any.whl (6.5 kB)
    Requirement already satisfied: numpy>=1.16 in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from matplotlib) (1.20.2)
    Collecting kiwisolver>=1.0.1
      Downloading kiwisolver-1.3.1-cp37-cp37m-win_amd64.whl (51 kB)
         |████████████████████████████████| 51 kB 3.8 MB/s
    Requirement already satisfied: six in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from cycler>=0.10->matplotlib) (1.15.0)
    Installing collected packages: pyparsing, kiwisolver, cycler, matplotlib
    Successfully installed cycler-0.10.0 kiwisolver-1.3.1 matplotlib-3.4.1 pyparsing-2.4.7
    
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>pip install opencv-python
    Collecting opencv-python
      Downloading opencv_python-4.5.1.48-cp37-cp37m-win_amd64.whl (34.9 MB)
         |████████████████████████████████| 34.9 MB 3.2 MB/s
    Requirement already satisfied: numpy>=1.14.5 in c:userszztappdatalocalcondacondaenvs	f_2021libsite-packages (from opencv-python) (1.20.2)
    Installing collected packages: opencv-python
    Successfully installed opencv-python-4.5.1.48
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detection/protos/*.proto python_out=.
    Missing output directives.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>for /f %i in ('dir /b object_detectionprotos*.proto') do protoc object_detectionprotos\%i --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosanchor_generator.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosargmax_matcher.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosipartite_matcher.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosox_coder.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosox_predictor.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotoseval.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosfaster_rcnn.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosfaster_rcnn_box_coder.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosgraph_rewriter.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosgrid_anchor_generator.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotoshyperparams.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosimage_resizer.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosinput_reader.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotoskeypoint_box_coder.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotoslosses.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosmatcher.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosmean_stddev_box_coder.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosmodel.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosmultiscale_anchor_generator.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosoptimizer.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotospipeline.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotospost_processing.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotospreprocessor.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotos
    egion_similarity_calculator.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotossquare_box_coder.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosssd.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosssd_anchor_generator.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotosstring_int_label_map.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>protoc object_detectionprotos	rain.proto --python_out=.
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>SET PYTHONPATH=%cd%;%cd%slim
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>python object_detectionuildersmodel_builder_test.py
    C:UserszztAppDataLocalcondacondaenvs	f_2021libsite-packages	ensorflowpythonframeworkdtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_qint8 = np.dtype([("qint8", np.int8, 1)])
    C:UserszztAppDataLocalcondacondaenvs	f_2021libsite-packages	ensorflowpythonframeworkdtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
    C:UserszztAppDataLocalcondacondaenvs	f_2021libsite-packages	ensorflowpythonframeworkdtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_qint16 = np.dtype([("qint16", np.int16, 1)])
    C:UserszztAppDataLocalcondacondaenvs	f_2021libsite-packages	ensorflowpythonframeworkdtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
    C:UserszztAppDataLocalcondacondaenvs	f_2021libsite-packages	ensorflowpythonframeworkdtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_qint32 = np.dtype([("qint32", np.int32, 1)])
    C:UserszztAppDataLocalcondacondaenvs	f_2021libsite-packages	ensorflowpythonframeworkdtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      np_resource = np.dtype([("resource", np.ubyte, 1)])
    C:UserszztAppDataLocalcondacondaenvs	f_2021libsite-packages	ensorboardcompat	ensorflow_stubdtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_qint8 = np.dtype([("qint8", np.int8, 1)])
    C:UserszztAppDataLocalcondacondaenvs	f_2021libsite-packages	ensorboardcompat	ensorflow_stubdtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
    C:UserszztAppDataLocalcondacondaenvs	f_2021libsite-packages	ensorboardcompat	ensorflow_stubdtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_qint16 = np.dtype([("qint16", np.int16, 1)])
    C:UserszztAppDataLocalcondacondaenvs	f_2021libsite-packages	ensorboardcompat	ensorflow_stubdtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
    C:UserszztAppDataLocalcondacondaenvs	f_2021libsite-packages	ensorboardcompat	ensorflow_stubdtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      _np_qint32 = np.dtype([("qint32", np.int32, 1)])
    C:UserszztAppDataLocalcondacondaenvs	f_2021libsite-packages	ensorboardcompat	ensorflow_stubdtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
      np_resource = np.dtype([("resource", np.ubyte, 1)])
    WARNING:tensorflow:
    The TensorFlow contrib module will not be included in TensorFlow 2.0.
    For more information, please see:
      * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
      * https://github.com/tensorflow/addons
      * https://github.com/tensorflow/io (for I/O related ops)
    If you depend on functionality not listed there, please file an issue.
    
    WARNING:tensorflow:From E:Anaconda3models-1.13.0
    esearchslim
    etsinception_resnet_v2.py:373: The name tf.GraphKeys is deprecated. Please use tf.compat.v1.GraphKeys instead.
    
    WARNING:tensorflow:From E:Anaconda3models-1.13.0
    esearchslim
    etsmobilenetmobilenet.py:389: The name tf.nn.avg_pool is deprecated. Please use tf.nn.avg_pool2d instead.
    
    Running tests under Python 3.7.10: C:UserszztAppDataLocalcondacondaenvs	f_2021python.exe
    [ RUN      ] ModelBuilderTest.test_create_embedded_ssd_mobilenet_v1_model_from_config
    C:UserszztAppDataLocalcondacondaenvs	f_2021libsite-packages	ensorflowpythonframework	ensor_util.py:538: DeprecationWarning: tostring() is deprecated. Use tobytes() instead.
      tensor_proto.tensor_content = nparray.tostring()
    [       OK ] ModelBuilderTest.test_create_embedded_ssd_mobilenet_v1_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_faster_rcnn_inception_resnet_v2_model_from_config
    WARNING:tensorflow:From E:Anaconda3models-1.13.0
    esearchobject_detectionanchor_generatorsgrid_anchor_generator.py:59: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
    Instructions for updating:
    Use `tf.cast` instead.
    W0415 08:32:15.916748  1152 deprecation.py:323] From E:Anaconda3models-1.13.0
    esearchobject_detectionanchor_generatorsgrid_anchor_generator.py:59: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
    Instructions for updating:
    Use `tf.cast` instead.
    [       OK ] ModelBuilderTest.test_create_faster_rcnn_inception_resnet_v2_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_faster_rcnn_inception_v2_model_from_config
    [       OK ] ModelBuilderTest.test_create_faster_rcnn_inception_v2_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_faster_rcnn_model_from_config_with_example_miner
    [       OK ] ModelBuilderTest.test_create_faster_rcnn_model_from_config_with_example_miner
    [ RUN      ] ModelBuilderTest.test_create_faster_rcnn_nas_model_from_config
    [       OK ] ModelBuilderTest.test_create_faster_rcnn_nas_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_faster_rcnn_pnas_model_from_config
    [       OK ] ModelBuilderTest.test_create_faster_rcnn_pnas_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_faster_rcnn_resnet101_with_mask_prediction_enabled0 (use_matmul_crop_and_resize=False)
    [       OK ] ModelBuilderTest.test_create_faster_rcnn_resnet101_with_mask_prediction_enabled0 (use_matmul_crop_and_resize=False)
    [ RUN      ] ModelBuilderTest.test_create_faster_rcnn_resnet101_with_mask_prediction_enabled1 (use_matmul_crop_and_resize=True)
    [       OK ] ModelBuilderTest.test_create_faster_rcnn_resnet101_with_mask_prediction_enabled1 (use_matmul_crop_and_resize=True)
    [ RUN      ] ModelBuilderTest.test_create_faster_rcnn_resnet_v1_models_from_config
    [       OK ] ModelBuilderTest.test_create_faster_rcnn_resnet_v1_models_from_config
    [ RUN      ] ModelBuilderTest.test_create_rfcn_resnet_v1_model_from_config
    [       OK ] ModelBuilderTest.test_create_rfcn_resnet_v1_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_ssd_inception_v2_model_from_config
    [       OK ] ModelBuilderTest.test_create_ssd_inception_v2_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_ssd_inception_v3_model_from_config
    [       OK ] ModelBuilderTest.test_create_ssd_inception_v3_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_ssd_mobilenet_v1_fpn_model_from_config
    [       OK ] ModelBuilderTest.test_create_ssd_mobilenet_v1_fpn_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_ssd_mobilenet_v1_model_from_config
    [       OK ] ModelBuilderTest.test_create_ssd_mobilenet_v1_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_ssd_mobilenet_v1_ppn_model_from_config
    [       OK ] ModelBuilderTest.test_create_ssd_mobilenet_v1_ppn_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_ssd_mobilenet_v2_fpn_model_from_config
    [       OK ] ModelBuilderTest.test_create_ssd_mobilenet_v2_fpn_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_ssd_mobilenet_v2_fpnlite_model_from_config
    [       OK ] ModelBuilderTest.test_create_ssd_mobilenet_v2_fpnlite_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_ssd_mobilenet_v2_keras_model_from_config
    [       OK ] ModelBuilderTest.test_create_ssd_mobilenet_v2_keras_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_ssd_mobilenet_v2_model_from_config
    [       OK ] ModelBuilderTest.test_create_ssd_mobilenet_v2_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_ssd_resnet_v1_fpn_model_from_config
    [       OK ] ModelBuilderTest.test_create_ssd_resnet_v1_fpn_model_from_config
    [ RUN      ] ModelBuilderTest.test_create_ssd_resnet_v1_ppn_model_from_config
    [       OK ] ModelBuilderTest.test_create_ssd_resnet_v1_ppn_model_from_config
    [ RUN      ] ModelBuilderTest.test_session
    [  SKIPPED ] ModelBuilderTest.test_session
    ----------------------------------------------------------------------
    Ran 22 tests in 0.078s
    
    OK (skipped=1)
    
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    (tf_2021) E:Anaconda3models-1.13.0
    esearch>
    #!/usr/bin/env python
    # coding: utf-8
    
    # # Object Detection Demo
    # Welcome to the object detection inference walkthrough!  This notebook will walk you step by step through the process of using a pre-trained model to detect objects in an image. Make sure to follow the [installation instructions](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md) before you start.
    
    # # Imports
    
    # In[ ]:
    
    
    import numpy as np
    import os
    import six.moves.urllib as urllib
    import sys
    import tarfile
    import tensorflow as tf
    import zipfile
    
    import cv2
    
    from distutils.version import StrictVersion
    from collections import defaultdict
    from io import StringIO
    from matplotlib import pyplot as plt
    from PIL import Image
    
    # This is needed since the notebook is stored in the object_detection folder.
    sys.path.append("..")
    from object_detection.utils import ops as utils_ops
    
    if StrictVersion(tf.__version__) < StrictVersion('1.9.0'):
      raise ImportError('Please upgrade your TensorFlow installation to v1.9.* or later!')
    
    
    # ## Env setup
    
    # In[ ]:
    
    
    # This is needed to display the images.
    #get_ipython().run_line_magic('matplotlib', 'inline')
    
    
    # ## Object detection imports
    # Here are the imports from the object detection module.
    
    # In[ ]:
    
    
    from utils import label_map_util
    
    from utils import visualization_utils as vis_util
    
    
    # # Model preparation 
    
    # ## Variables
    # 
    # Any model exported using the `export_inference_graph.py` tool can be loaded here simply by changing `PATH_TO_FROZEN_GRAPH` to point to a new .pb file.  
    # 
    # By default we use an "SSD with Mobilenet" model here. See the [detection model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies.
    
    # In[ ]:
    
    
    # What model to download.
    MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
    MODEL_FILE = MODEL_NAME + '.tar.gz'
    DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
    
    # Path to frozen detection graph. This is the actual model that is used for the object detection.
    PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb'
    
    # List of the strings that is used to add correct label for each box.
    PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
    
    
    # ## Download Model
    
    # In[ ]:
    
    
    opener = urllib.request.URLopener()
    opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
    tar_file = tarfile.open(MODEL_FILE)
    for file in tar_file.getmembers():
      file_name = os.path.basename(file.name)
      if 'frozen_inference_graph.pb' in file_name:
        tar_file.extract(file, os.getcwd())
    
    
    # ## Load a (frozen) Tensorflow model into memory.
    
    # In[ ]:
    
    
    detection_graph = tf.Graph()
    with detection_graph.as_default():
      od_graph_def = tf.GraphDef()
      with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')
    
    
    # ## Loading label map
    # Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`.  Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
    
    # In[ ]:
    
    
    category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
    
    
    # ## Helper code
    
    # In[ ]:
    
    
    def load_image_into_numpy_array(image):
      (im_width, im_height) = image.size
      return np.array(image.getdata()).reshape(
          (im_height, im_width, 3)).astype(np.uint8)
    
    
    # # Detection
    
    # In[ ]:
    
    
    # For the sake of simplicity we will use only 2 images:
    # image1.jpg
    # image2.jpg
    # If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
    PATH_TO_TEST_IMAGES_DIR = 'test_images'
    PATH_TO_OUT_TEST_IMAGES_DIR = 'test_images_out'
    TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]
    
    # Size, in inches, of the output images.
    IMAGE_SIZE = (12, 8)
    
    
    # In[ ]:
    
    
    def run_inference_for_single_image(image, graph):
      with graph.as_default():
        with tf.Session() as sess:
          # Get handles to input and output tensors
          ops = tf.get_default_graph().get_operations()
          all_tensor_names = {output.name for op in ops for output in op.outputs}
          tensor_dict = {}
          for key in [
              'num_detections', 'detection_boxes', 'detection_scores',
              'detection_classes', 'detection_masks'
          ]:
            tensor_name = key + ':0'
            if tensor_name in all_tensor_names:
              tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
                  tensor_name)
          if 'detection_masks' in tensor_dict:
            # The following processing is only for single image
            detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
            detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
            # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
            real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
            detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
            detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
            detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
                detection_masks, detection_boxes, image.shape[0], image.shape[1])
            detection_masks_reframed = tf.cast(
                tf.greater(detection_masks_reframed, 0.5), tf.uint8)
            # Follow the convention by adding back the batch dimension
            tensor_dict['detection_masks'] = tf.expand_dims(
                detection_masks_reframed, 0)
          image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
    
          # Run inference
          output_dict = sess.run(tensor_dict,
                                 feed_dict={image_tensor: np.expand_dims(image, 0)})
    
          # all outputs are float32 numpy arrays, so convert types as appropriate
          output_dict['num_detections'] = int(output_dict['num_detections'][0])
          output_dict['detection_classes'] = output_dict[
              'detection_classes'][0].astype(np.uint8)
          output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
          output_dict['detection_scores'] = output_dict['detection_scores'][0]
          if 'detection_masks' in output_dict:
            output_dict['detection_masks'] = output_dict['detection_masks'][0]
      return output_dict
    
    
    # In[ ]:
    
    
    for image_path in TEST_IMAGE_PATHS:
      image = Image.open(image_path)
      # the array based representation of the image will be used later in order to prepare the
      # result image with boxes and labels on it.
      image_np = load_image_into_numpy_array(image)
      # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
      image_np_expanded = np.expand_dims(image_np, axis=0)
      # Actual detection.
      output_dict = run_inference_for_single_image(image_np, detection_graph)
      # Visualization of the results of a detection.
      vis_util.visualize_boxes_and_labels_on_image_array(
          image_np,
          output_dict['detection_boxes'],
          output_dict['detection_classes'],
          output_dict['detection_scores'],
          category_index,
          instance_masks=output_dict.get('detection_masks'),
          use_normalized_coordinates=True,
          line_thickness=8)
      #plt.figure(figsize=IMAGE_SIZE)
    
    
    
      #plt.imshow(image_np)
      #OUT_TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_OUT_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]
      image_path_out = image_path.replace("test_images","test_images_out")
      print(image_path_out)
      cv2.imwrite(image_path_out,image_np)
    
    
    # In[ ]:

     

    安装 labelme

    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>pip install labelme
    Collecting labelme
      Downloading labelme-4.5.7.tar.gz (1.5 MB)
         |████████████████████████████████| 1.5 MB 1.3 MB/s
    Collecting imgviz>=0.11.0
      Downloading imgviz-1.2.6.tar.gz (7.7 MB)
         |████████████████████████████████| 7.7 MB 1.7 MB/s
      Installing build dependencies ... done
      Getting requirements to build wheel ... done
        Preparing wheel metadata ... done
    Collecting matplotlib<3.3
      Downloading matplotlib-3.2.2-cp37-cp37m-win_amd64.whl (9.2 MB)
         |████████████████████████████████| 9.2 MB 6.8 MB/s
    Requirement already satisfied: numpy in e:anaconda3installenvswind_202104libsite-packages (from labelme) (1.20.2)
    Requirement already satisfied: Pillow>=2.8.0 in c:usersimappdata
    oamingpythonpython37site-packages (from labelme) (8.2.0)
    Requirement already satisfied: PyYAML in e:anaconda3installenvswind_202104libsite-packages (from labelme) (5.4.1)
    Requirement already satisfied: qtpy in c:usersimappdata
    oamingpythonpython37site-packages (from labelme) (1.9.0)
    Requirement already satisfied: termcolor in e:anaconda3installenvswind_202104libsite-packages (from labelme) (1.1.0)
    Collecting PyQt5
      Downloading PyQt5-5.15.4-cp36.cp37.cp38.cp39-none-win_amd64.whl (6.8 MB)
         |████████████████████████████████| 6.8 MB 2.2 MB/s
    Requirement already satisfied: colorama in e:anaconda3installenvswind_202104libsite-packages (from labelme) (0.3.3)
    Requirement already satisfied: cycler>=0.10 in c:usersimappdata
    oamingpythonpython37site-packages (from matplotlib<3.3->labelme) (0.10.0)
    Requirement already satisfied: python-dateutil>=2.1 in c:usersimappdata
    oamingpythonpython37site-packages (from matplotlib<3.3->labelme) (2.8.1)
    Requirement already satisfied: kiwisolver>=1.0.1 in c:usersimappdata
    oamingpythonpython37site-packages (from matplotlib<3.3->labelme) (1.3.1)
    Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in c:usersimappdata
    oamingpythonpython37site-packages (from matplotlib<3.3->labelme) (2.4.7)
    Requirement already satisfied: six in e:anaconda3installenvswind_202104libsite-packages (from cycler>=0.10->matplotlib<3.3->labelme) (1.15.0)
    Collecting PyQt5-Qt5>=5.15
      Downloading PyQt5_Qt5-5.15.2-py3-none-win_amd64.whl (50.1 MB)
         |████████████████████████████████| 50.1 MB 99 kB/s
    Collecting PyQt5-sip<13,>=12.8
      Downloading PyQt5_sip-12.8.1-cp37-cp37m-win_amd64.whl (62 kB)
         |████████████████████████████████| 62 kB 138 kB/s
    Building wheels for collected packages: labelme, imgviz
      Building wheel for labelme (setup.py) ... done
      Created wheel for labelme: filename=labelme-4.5.7-py3-none-any.whl size=1464688 sha256=60187add8acd7a5d1ccf80309ee30594778e0ba32dcdd826d9f5b7c5f2108fcd
      Stored in directory: c:usersimappdatalocalpipcachewheels207458c8c6dacbe2504c3cf738ca1d4587fdb4885792548d4f7b1eba
      Building wheel for imgviz (PEP 517) ... done
      Created wheel for imgviz: filename=imgviz-1.2.6-py3-none-any.whl size=7674073 sha256=dacec8048dea70d7f87993720662bfe60696f7496922128b6d918dd20ea8af92
      Stored in directory: c:usersimappdatalocalpipcachewheelse664f9a28eca2133ece5f072f51282577f2f9b7d6d0492eb3d2104dd
    Successfully built labelme imgviz
    Installing collected packages: PyQt5-sip, PyQt5-Qt5, matplotlib, PyQt5, imgviz, labelme
      Attempting uninstall: matplotlib
        Found existing installation: matplotlib 3.4.1
        Uninstalling matplotlib-3.4.1:
          Successfully uninstalled matplotlib-3.4.1
    Successfully installed PyQt5-5.15.4 PyQt5-Qt5-5.15.2 PyQt5-sip-12.8.1 imgviz-1.2.6 labelme-4.5.7 matplotlib-3.2.2
    
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>
    (wind_202104) F:TensorflowProjectmaks_rcnn_2018>

     https://blog.csdn.net/zhangzc12409/article/details/90512044

     https://github.com/tensorflow/models/blob/v1.13.0/research/object_detection/g3doc/installation.md

     https://github.com/tensorflow/models/blob/v1.13.0/research/object_detection/g3doc/installation.md

    ############################

    QQ 3087438119
  • 相关阅读:
    opencv3.2.0形态学滤波之腐蚀
    Ubuntu下卸载QT5.7.1再重装
    opencv3.2.0形态学滤波之膨胀
    Direct3D中的绘制
    绘制流水线
    初始化Direct3D
    VS2012添加对DirectX SDK中需要文件的引用
    ASCII,Unicode 和通用方式
    对话框访问的7种方式【孙鑫老师教程】
    函数指针
  • 原文地址:https://www.cnblogs.com/herd/p/14660806.html
Copyright © 2011-2022 走看看