zoukankan      html  css  js  c++  java
  • yolov5训练模型日志

    yolov5训练模型日志

    早晨9点多开始训练,刚刚终于训练完了!

    python train_20220110.py --img-size 640 --batch-size 1 --epochs 300 --data ./data/myvoc.yaml --cfg ./models/yolov5m.yaml --workers 0
    (wind_2021) F:\PytorchProject\yolov5-master>
    (wind_2021) F:\PytorchProject\yolov5-master>
    (wind_2021) F:\PytorchProject\yolov5-master>python train_20220110.py --img-size 640 --batch-size 1 --epochs 300 --data ./data/myvoc.yaml --cfg ./models/yolov5m.yaml --workers 0
    Using torch 1.8.1+cu111 CUDA:0 (NVIDIA GeForce RTX 3080 Laptop GPU, 16384.0MB)
    
    
    Namespace(adam=False, batch_size=1, bucket='', cache_images=False, cfg='./models/yolov5m.yaml', data='./data/myvoc.yaml', device='', epochs=300, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], local_rank=-1, log_artifacts=False, log_imgs=16, multi_scale=False, name='exp', noautoanchor=False, nosave=False, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs\\train\\exp3', single_cls=False, sync_bn=False, total_batch_size=1, weights='yolov5s.pt', workers=0, world_size=1)
    Start Tensorboard with "tensorboard --logdir runs/train", view at http://localhost:6006/
    Hyperparameters {'lr0': 0.01, 'lrf': 0.2, 'momentum': 0.937, 'weight_decay': 0.0005, 'warmup_epochs': 3.0, 'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1, 'box': 0.05, 'cls': 0.5, 'cls_pw': 1.0, 'obj': 1.0, 'obj_pw': 1.0, 'iou_t': 0.2, 'anchor_t': 4.0, 'fl_gamma': 0.0, 'hsv_h': 0.015, 'hsv_s': 0.7, 'hsv_v': 0.4, 'degrees': 0.0, 'translate': 0.1, 'scale': 0.5, 'shear': 0.0, 'perspective': 0.0, 'flipud': 0.0, 'fliplr': 0.5, 'mosaic': 1.0, 'mixup': 0.0}
    Overriding model.yaml nc=80 with nc=2
    
                     from  n    params  module                                  arguments
      0                -1  1      5280  models.common.Focus                     [3, 48, 3]
      1                -1  1     41664  models.common.Conv                      [48, 96, 3, 2]
      2                -1  1     65280  models.common.C3                        [96, 96, 2]
      3                -1  1    166272  models.common.Conv                      [96, 192, 3, 2]
      4                -1  1    629760  models.common.C3                        [192, 192, 6]
      5                -1  1    664320  models.common.Conv                      [192, 384, 3, 2]
      6                -1  1   2512896  models.common.C3                        [384, 384, 6]
      7                -1  1   2655744  models.common.Conv                      [384, 768, 3, 2]
      8                -1  1   1476864  models.common.SPP                       [768, 768, [5, 9, 13]]
      9                -1  1   4134912  models.common.C3                        [768, 768, 2, False]
     10                -1  1    295680  models.common.Conv                      [768, 384, 1, 1]
     11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
     12           [-1, 6]  1         0  models.common.Concat                    [1]
     13                -1  1   1182720  models.common.C3                        [768, 384, 2, False]
     14                -1  1     74112  models.common.Conv                      [384, 192, 1, 1]
     15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
     16           [-1, 4]  1         0  models.common.Concat                    [1]
     17                -1  1    296448  models.common.C3                        [384, 192, 2, False]
     18                -1  1    332160  models.common.Conv                      [192, 192, 3, 2]
     19          [-1, 14]  1         0  models.common.Concat                    [1]
     20                -1  1   1035264  models.common.C3                        [384, 384, 2, False]
     21                -1  1   1327872  models.common.Conv                      [384, 384, 3, 2]
     22          [-1, 10]  1         0  models.common.Concat                    [1]
     23                -1  1   4134912  models.common.C3                        [768, 768, 2, False]
     24      [17, 20, 23]  1     28287  models.yolo.Detect                      [2, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [192, 384, 768]]
    Model Summary: 391 layers, 21060447 parameters, 21060447 gradients, 50.4 GFLOPS
    
    Transferred 59/506 items from yolov5s.pt
    Scaled weight_decay = 0.0005
    Optimizer groups: 86 .bias, 86 conv.weight, 83 other
    Scanning 'VOC2007\labels' for images and labels... 1167 found, 0 missing, 0 empty, 0 corrupted: 100%|████████████████████████| 1167/1167 [00:00<00:00, 2235.50it/s]
    New cache created: VOC2007\labels.cache
    Scanning 'VOC2007\labels.cache' for images and labels... 1167 found, 0 missing, 0 empty, 0 corrupted: 100%|████████████████████████████| 1167/1167 [00:00<?, ?it/s]
    Scanning 'VOC2007\labels' for images and labels... 130 found, 0 missing, 0 empty, 0 corrupted: 100%|███████████████████████████| 130/130 [00:00<00:00, 2303.22it/s]
    New cache created: VOC2007\labels.cache
    Scanning 'VOC2007\labels.cache' for images and labels... 130 found, 0 missing, 0 empty, 0 corrupted: 100%|███████████████████████████████| 130/130 [00:00<?, ?it/s]Plotting labels...
    Scanning 'VOC2007\labels.cache' for images and labels... 130 found, 0 missing, 0 empty, 0 corrupted: 100%|███████████████████████████████| 130/130 [00:00<?, ?it/s]
    
    Analyzing anchors... anchors/target = 4.58, Best Possible Recall (BPR) = 0.9936
    Image sizes 640 train, 640 test
    Using 0 dataloader workers
    Logging results to runs\train\exp3
    Starting training for 300 epochs...
    
         Epoch   gpu_mem       box       obj       cls     total   targets  img_size
         0/299     1.22G    0.0933   0.05733   0.02477    0.1754         5       640: 100%|████████████████████████████████████████| 1167/1167 [02:04<00:00,  9.36it/s]
                   Class      Images     Targets           P           R      mAP@.5  mAP@.5:.95: 100%|██████████████████████████████| 130/130 [00:07<00:00, 16.46it/s]
                     all         130         603     0.00567      0.0312     0.00239    0.000364
    
         Epoch   gpu_mem       box       obj       cls     total   targets  img_size
         1/299      1.2G   0.08475   0.06171    0.0221    0.1686        13       640: 100%|████████████████████████████████████████| 1167/1167 [01:54<00:00, 10.22it/s]
                   Class      Images     Targets           P           R      mAP@.5  mAP@.5:.95: 100%|██████████████████████████████| 130/130 [00:05<00:00, 23.42it/s]
                     all         130         603           0           0     0.00444    0.000659
    
         Epoch   gpu_mem       box       obj       cls     total   targets  img_size
         2/299      1.2G   0.08172   0.06241   0.02027    0.1644         7       640: 100%|████████████████████████████████████████| 1167/1167 [01:55<00:00, 10.08it/s]
                   Class      Images     Targets           P           R      mAP@.5  mAP@.5:.95: 100%|██████████████████████████████| 130/130 [00:05<00:00, 23.42it/s]
                     all         130         603      0.0665      0.0118      0.0241     0.00448
    
    .............
    
         Epoch   gpu_mem       box       obj       cls     total   targets  img_size
       296/299      1.2G   0.01706    0.0198  0.001733    0.0386         6       640: 100%|████████████████████████████████████████| 1167/1167 [01:55<00:00, 10.13it/s]
                   Class      Images     Targets           P           R      mAP@.5  mAP@.5:.95: 100%|██████████████████████████████| 130/130 [00:04<00:00, 26.75it/s]
                     all         130         603       0.678       0.902       0.894       0.737
    
         Epoch   gpu_mem       box       obj       cls     total   targets  img_size
       297/299      1.2G   0.01698   0.01983  0.002011   0.03882         4       640: 100%|████████████████████████████████████████| 1167/1167 [01:55<00:00, 10.14it/s]
                   Class      Images     Targets           P           R      mAP@.5  mAP@.5:.95: 100%|██████████████████████████████| 130/130 [00:04<00:00, 26.51it/s]
                     all         130         603       0.682       0.908       0.895       0.732
    
         Epoch   gpu_mem       box       obj       cls     total   targets  img_size
       298/299      1.2G   0.01728   0.02027  0.001985   0.03953         5       640: 100%|████████████████████████████████████████| 1167/1167 [01:55<00:00, 10.14it/s]
                   Class      Images     Targets           P           R      mAP@.5  mAP@.5:.95: 100%|██████████████████████████████| 130/130 [00:04<00:00, 26.55it/s]
                     all         130         603       0.698       0.913       0.899       0.737
    
         Epoch   gpu_mem       box       obj       cls     total   targets  img_size
       299/299      1.2G   0.01718   0.02062  0.002008   0.03981         9       640: 100%|████████████████████████████████████████| 1167/1167 [01:55<00:00, 10.07it/s]
                   Class      Images     Targets           P           R      mAP@.5  mAP@.5:.95: 100%|██████████████████████████████| 130/130 [00:05<00:00, 23.90it/s]
                     all         130         603       0.683       0.909       0.896       0.736
    Optimizer stripped from runs\train\exp3\weights\last.pt, 42.5MB
    Optimizer stripped from runs\train\exp3\weights\best.pt, 42.5MB
    300 epochs completed in 10.018 hours.
    
    
    (wind_2021) F:\PytorchProject\yolov5-master>
    (wind_2021) F:\PytorchProject\yolov5-master>
    (wind_2021) F:\PytorchProject\yolov5-master>

    测试:

    python detect_2022011001.py --weights runs/train/exp3/weights/best.pt --conf 0.60  --source data/images_20220110/

    #########################

    QQ 3087438119
  • 相关阅读:
    把EXE可执行文件等作为资源包含在Delphi编译文件中
    delphi怎么做桌面滚动文字?
    cxGrid控件过滤筛选后如何获更新筛选后的数据集
    我的ecshop二次开发经验分享
    ECSHOP 数据库结构说明 (适用版本v2.7.3)
    cxGrid 怎样才能让不自动换行 WordWrap:=false
    vi notes
    ODI中显示us7ascii字符集的测试
    ODI 11g & 12c中缓慢变化维(SCD)的处理机制
    ODI中的临时接口
  • 原文地址:https://www.cnblogs.com/herd/p/15786130.html
Copyright © 2011-2022 走看看