zoukankan      html  css  js  c++  java
  • codeforces628D. Magic Numbers (数位dp)

    Consider the decimal presentation of an integer. Let's call a number d-magic if digit d appears in decimal presentation of the number on even positions and nowhere else.

    For example, the numbers 1727374171 are 7-magic but 7771233471 are not 7-magic. On the other hand the number 7 is 0-magic123 is 2-magic34 is 4-magic and 71 is 1-magic.

    Find the number of d-magic numbers in the segment [a, b] that are multiple of m. Because the answer can be very huge you should only find its value modulo 109 + 7 (so you should find the remainder after dividing by 109 + 7).

    Input

    The first line contains two integers m, d (1 ≤ m ≤ 20000 ≤ d ≤ 9) — the parameters from the problem statement.

    The second line contains positive integer a in decimal presentation (without leading zeroes).

    The third line contains positive integer b in decimal presentation (without leading zeroes).

    It is guaranteed that a ≤ b, the number of digits in a and b are the same and don't exceed 2000.

    Output

    Print the only integer a — the remainder after dividing by 109 + 7 of the number of d-magic numbers in segment [a, b] that are multiple of m.

    Examples
    input
    2 6
    10
    99
    
    output
    8
    
    input
    2 0
    1
    9
    
    output
    4
    
    input
    19 7
    1000
    9999
    
    output
    6
    
    Note

    The numbers from the answer of the first example are 16263646567686 and 96.

    The numbers from the answer of the second example are 246 and 8.

    The numbers from the answer of the third example are 17672717575767078797 and 9747.

    题意:给你一个区间[a,b],让你找到这个区间内满足没有前导零且偶数位都是d,奇数位不出现d,并且这个数能被m整除的数的个数。

    思路:用dp[pos][yushu][oushu]表示pos位前面的位形成的数modm后余数为yushu,且当前位是否是偶数的方案数,要注意前导零。


    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<string>
    #include<bitset>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    #define inf 99999999
    #define MOD 1000000007
    char s1[2005],s2[2005];
    int wei[2005];
    ll dp[2005][2005][2];
    int m,d;
    void add(ll& x,ll y) {
        x += y;
        if(x>=MOD) x-=MOD;
    }
    
    
    ll dfs(int pos,int yushu,int oushu,int flag,int zero)
    {
        int i,j;
        if(pos==-1){
            if(zero==1)return 0;
            if(yushu==0)return 1;
            else return 0;
        }
        if(!flag && !zero && dp[pos][yushu][oushu]!=-1){
            return dp[pos][yushu][oushu];
        }
    
        int ed=flag?wei[pos]:9;
        ll ans=0;
        if(zero==1){
            add(ans,dfs(pos-1,yushu,oushu,0,1));
            for(i=1;i<=ed;i++){
                if(i!=d)add(ans,dfs(pos-1,(yushu*10+i)%m,1^oushu,flag&&wei[pos]==i,0) );
            }
        }
        else{
            if(oushu){
                if(d<=ed)add(ans,dfs(pos-1,(yushu*10+d)%m,1^oushu,flag&&wei[pos]==d,0) );
            }
            else{
                for(i=0;i<=ed;i++){
                    if(i!=d)add(ans,dfs(pos-1,(yushu*10+i)%m,1^oushu,flag&&wei[pos]==i,0) );
                }
            }
        }
        if(!flag && !zero){
            dp[pos][yushu][oushu]=ans;
        }
        return ans;
    }
    
    ll solve(char s[])
    {
        int len,i,j;
        len=strlen(s);
        for(i=len-1;i>=0;i--){
            wei[i]=s[i]-'0';
        }
        return dfs(len-1,0,0,1,1);
    }
    
    int main()
    {
        int n,i,j,len1,len2;
        while(scanf("%d%d",&m,&d)!=EOF)
        {
            scanf("%s%s",s1,s2);
            len1=strlen(s1);
            reverse(s1,s1+len1);
            for(i=0;i<len1;i++){
                if(s1[i]=='0'){
                    s1[i]='9';
                }
                else{
                    s1[i]--;break;
                }
            }
            if(s1[len1-1]=='0'){
                s1[len1-1]='';
                len1--;
            }
    
            len2=strlen(s2);
            reverse(s2,s2+len2);
            memset(dp,-1,sizeof(dp));
            ll num1=solve(s1);
            ll num2=solve(s2);
            printf("%I64d
    ",((num2-num1)%MOD+MOD)%MOD );
    
        }
        return 0;
    }
    


  • 相关阅读:
    31天重构指南之二十:提取子类
    31天重构指南之二十二:分解方法
    大叔手记(17):大叔2011年读过的书及2012年即将要读的书
    深入理解JavaScript系列(5):强大的原型和原型链
    深入理解JavaScript系列(10):JavaScript核心(晋级高手必读篇)
    深入理解JavaScript系列(11):执行上下文(Execution Contexts)
    深入理解JavaScript系列(8):S.O.L.I.D五大原则之里氏替换原则LSP
    深入理解JavaScript系列(4):立即调用的函数表达式
    深入理解JavaScript系列(3):全面解析Module模式
    深入理解JavaScript系列(7):S.O.L.I.D五大原则之开闭原则OCP
  • 原文地址:https://www.cnblogs.com/herumw/p/9464498.html
Copyright © 2011-2022 走看看