zoukankan      html  css  js  c++  java
  • codeforces628D. Magic Numbers (数位dp)

    Consider the decimal presentation of an integer. Let's call a number d-magic if digit d appears in decimal presentation of the number on even positions and nowhere else.

    For example, the numbers 1727374171 are 7-magic but 7771233471 are not 7-magic. On the other hand the number 7 is 0-magic123 is 2-magic34 is 4-magic and 71 is 1-magic.

    Find the number of d-magic numbers in the segment [a, b] that are multiple of m. Because the answer can be very huge you should only find its value modulo 109 + 7 (so you should find the remainder after dividing by 109 + 7).

    Input

    The first line contains two integers m, d (1 ≤ m ≤ 20000 ≤ d ≤ 9) — the parameters from the problem statement.

    The second line contains positive integer a in decimal presentation (without leading zeroes).

    The third line contains positive integer b in decimal presentation (without leading zeroes).

    It is guaranteed that a ≤ b, the number of digits in a and b are the same and don't exceed 2000.

    Output

    Print the only integer a — the remainder after dividing by 109 + 7 of the number of d-magic numbers in segment [a, b] that are multiple of m.

    Examples
    input
    2 6
    10
    99
    
    output
    8
    
    input
    2 0
    1
    9
    
    output
    4
    
    input
    19 7
    1000
    9999
    
    output
    6
    
    Note

    The numbers from the answer of the first example are 16263646567686 and 96.

    The numbers from the answer of the second example are 246 and 8.

    The numbers from the answer of the third example are 17672717575767078797 and 9747.

    题意:给你一个区间[a,b],让你找到这个区间内满足没有前导零且偶数位都是d,奇数位不出现d,并且这个数能被m整除的数的个数。

    思路:用dp[pos][yushu][oushu]表示pos位前面的位形成的数modm后余数为yushu,且当前位是否是偶数的方案数,要注意前导零。


    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<string>
    #include<bitset>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    #define inf 99999999
    #define MOD 1000000007
    char s1[2005],s2[2005];
    int wei[2005];
    ll dp[2005][2005][2];
    int m,d;
    void add(ll& x,ll y) {
        x += y;
        if(x>=MOD) x-=MOD;
    }
    
    
    ll dfs(int pos,int yushu,int oushu,int flag,int zero)
    {
        int i,j;
        if(pos==-1){
            if(zero==1)return 0;
            if(yushu==0)return 1;
            else return 0;
        }
        if(!flag && !zero && dp[pos][yushu][oushu]!=-1){
            return dp[pos][yushu][oushu];
        }
    
        int ed=flag?wei[pos]:9;
        ll ans=0;
        if(zero==1){
            add(ans,dfs(pos-1,yushu,oushu,0,1));
            for(i=1;i<=ed;i++){
                if(i!=d)add(ans,dfs(pos-1,(yushu*10+i)%m,1^oushu,flag&&wei[pos]==i,0) );
            }
        }
        else{
            if(oushu){
                if(d<=ed)add(ans,dfs(pos-1,(yushu*10+d)%m,1^oushu,flag&&wei[pos]==d,0) );
            }
            else{
                for(i=0;i<=ed;i++){
                    if(i!=d)add(ans,dfs(pos-1,(yushu*10+i)%m,1^oushu,flag&&wei[pos]==i,0) );
                }
            }
        }
        if(!flag && !zero){
            dp[pos][yushu][oushu]=ans;
        }
        return ans;
    }
    
    ll solve(char s[])
    {
        int len,i,j;
        len=strlen(s);
        for(i=len-1;i>=0;i--){
            wei[i]=s[i]-'0';
        }
        return dfs(len-1,0,0,1,1);
    }
    
    int main()
    {
        int n,i,j,len1,len2;
        while(scanf("%d%d",&m,&d)!=EOF)
        {
            scanf("%s%s",s1,s2);
            len1=strlen(s1);
            reverse(s1,s1+len1);
            for(i=0;i<len1;i++){
                if(s1[i]=='0'){
                    s1[i]='9';
                }
                else{
                    s1[i]--;break;
                }
            }
            if(s1[len1-1]=='0'){
                s1[len1-1]='';
                len1--;
            }
    
            len2=strlen(s2);
            reverse(s2,s2+len2);
            memset(dp,-1,sizeof(dp));
            ll num1=solve(s1);
            ll num2=solve(s2);
            printf("%I64d
    ",((num2-num1)%MOD+MOD)%MOD );
    
        }
        return 0;
    }
    


  • 相关阅读:
    C# 遍历enum类型元素、获取最大值、最小值
    ABAP-成本报表案例
    recovering corrupted postgres database
    自定义QHeaderView后,点击表头排序失效的解决办法
    Visual Studio 2017社区版登录时始终卡在登录界面的另一个登录办法
    已经安装好的TortoiseSVN在更改盘符后不能使用无法卸载也无法安装的解决办法
    使用别人已经静态编译好的Qt库在进行自己的Qt Creator配置时,在配置Qt Version时出现的2个问题解决办法
    ASCII、Unicode和UTF-8,一文看懂,保存链接
    centos7 挂载硬盘操作
    一次性kill所有进程的命令
  • 原文地址:https://www.cnblogs.com/herumw/p/9464498.html
Copyright © 2011-2022 走看看