zoukankan      html  css  js  c++  java
  • poj1061青蛙的约会 (扩展欧几里德)

    Description

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
    我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

    Input

    输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

    Output

    输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

    Sample Input

    1 2 3 4 5

    Sample Output

    4

    题意:给你两个青蛙的坐标x1,y1,以及它们每次能跳的距离m,n,它们绕着长为l的圈子同方向跳跃,问最少跳几次它们能够碰面。

    思路:要使得它们在一个地方碰面,那么必须满足(x1+m*t)=(y1+n*t)mod l,变形后为(m-n)*t+l*(-k)=y1-x1,这里如果m<n,那么要把m,n;x,y;相互交换。变形后的式子就是一个普通的模线性方程了。

    有一个结论:方程ax=b(mod n)有解(即存在d|b,其中d=gcd(a,n)),x0=x*(b/d)%n+n是该方程的任意一个解,也是最小非负整数解,则该方程对模n恰有d个不同的解,分别为 xi=x0+i*(n/d)(i=0,1,...d-1).方程ax=b(mod n)对模n的最小非负整数解为x0 ,最大整数解x2=x0+(d-1)*(n/d)。


    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    typedef long double ldb;
    #define inf 99999999
    #define pi acos(-1.0)
    
    ll extend_gcd(ll a,ll b,ll &x,ll &y){
        if(b==0){
            x=1;y=0;return a;
        }
        ll d=extend_gcd(b,a%b,y,x);
        y-=a/b*x;
        return d;
    }
    
    int main()
    {
        ll x,y,n,m,l,x1,y1,i;
        while(scanf("%lld%lld%lld%lld%lld",&x1,&y1,&m,&n,&l)!=EOF)
        {
            if(m<n){
                swap(m,n);
                swap(x1,y1);
            }
            ll dis=y1-x1;
            ll d=extend_gcd(m-n,l,x,y);
            if(dis%d!=0){
                printf("Impossible
    ");continue;
            }
            x=x*dis/d;
            ll r=l/d;
            x=(x%r+r)%r;//求出最小非负整数解
            printf("%I64d
    ",x);
        }
        return 0;
    }
    


  • 相关阅读:
    USACO 3.3 A Game
    USACO 3.3 Camelot
    USACO 3.3 Shopping Offers
    USACO 3.3 TEXT Eulerian Tour中的Cows on Parade一点理解
    USACO 3.3 Riding the Fences
    USACO 3.2 Magic Squares
    USACO 3.2 Stringsobits
    USACO 3.2 Factorials
    USACO 3.2 Contact
    USACO 3.1 Humble Numbers
  • 原文地址:https://www.cnblogs.com/herumw/p/9464540.html
Copyright © 2011-2022 走看看