Total Submission(s): 2046 Accepted Submission(s): 813
Problem Description
As we all known , the Fibonacci series : F(0) = 1, F(1) = 1, F(N) = F(N - 1) + F(N - 2) (N >= 2).Now we define another kind of Fibonacci : A(0) = 1 , A(1) = 1 , A(N) = X * A(N - 1) + Y * A(N - 2) (N >= 2).And we want to Calculate S(N) , S(N) = A(0)2 +A(1)2+……+A(n)2.
Input
There are several test cases.
Each test case will contain three integers , N, X , Y .
N : 2<= N <= 231 – 1
X : 2<= X <= 231– 1
Y : 2<= Y <= 231 – 1
Each test case will contain three integers , N, X , Y .
N : 2<= N <= 231 – 1
X : 2<= X <= 231– 1
Y : 2<= Y <= 231 – 1
Output
For each test case , output the answer of S(n).If the answer is too big , divide it by 10007 and give me the reminder.
Sample Input
2 1 1
3 2 3
Sample Output
6
196
Author
wyb
这题可以用矩阵快速幂做,构造【A[n-2],A[n-1],A[n-1]*A[n-1],A[n-1]*A[n-2],A[n-2]*A[n-2],S[n-1]】*A=【A[n-1],A[n],A[n]*A[n],A[n]*A[n-1],A[n-1]*A[n-1],S[n]】.
0 y 0 0 0 0
1 x 0 0 0 0
其中A=0 0 x*x x 1 x*x
0 0 2*x*y y 0 2*x*y
0 0 y*y 0 0 y*y
0 0 0 0 0 1
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define MOD 10007
struct matrix{
ll n,m,i;
ll data[8][8];
void init_danwei(){
for(i=0;i<n;i++){
data[i][i]=1;
}
}
};
matrix multi(matrix &a,matrix &b){
ll i,j,k;
matrix temp;
temp.n=a.n;
temp.m=b.m;
for(i=0;i<temp.n;i++){
for(j=0;j<temp.m;j++){
temp.data[i][j]=0;
}
}
for(i=0;i<a.n;i++){
for(k=0;k<a.m;k++){
if(a.data[i][k]>0){
for(j=0;j<b.m;j++){
temp.data[i][j]=(temp.data[i][j]+(a.data[i][k]*b.data[k][j])%MOD )%MOD;
}
}
}
}
return temp;
}
matrix fast_mod(matrix &a,ll n){
matrix ans;
ans.n=a.n;
ans.m=a.m;
memset(ans.data,0,sizeof(ans.data));
ans.init_danwei();
while(n>0){
if(n&1)ans=multi(ans,a);
a=multi(a,a);
n>>=1;
}
return ans;
}
int main()
{
ll n,x,y,m,i,j;
while(scanf("%lld%lld%lld",&n,&x,&y)!=EOF)
{
x=x%MOD;
y=y%MOD;
matrix a;
a.n=a.m=6;
memset(a.data,0,sizeof(a.data));
a.data[0][1]=a.data[3][3]=y;
a.data[1][1]=a.data[2][3]=x;
a.data[2][4]=a.data[1][0]=a.data[5][5]=1;
a.data[2][2]=a.data[2][5]=x*x%MOD;
a.data[4][2]=a.data[4][5]=y*y%MOD;
a.data[3][2]=a.data[3][5]=2*x*y%MOD;
matrix ans;
ans=fast_mod(a,n-1);
matrix cnt;
cnt.n=1;cnt.m=6;
cnt.data[0][0]=cnt.data[0][3]=cnt.data[0][4]=1;
cnt.data[0][1]=cnt.data[0][2]=1;
cnt.data[0][5]=2;
matrix ant;
ant=multi(cnt,ans);
printf("%lld
",ant.data[0][5]);
}
return 0;
}