zoukankan      html  css  js  c++  java
  • hdu4291 A Short problem

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2383    Accepted Submission(s): 833


    Problem Description
      According to a research, VIM users tend to have shorter fingers, compared with Emacs users.
      Hence they prefer problems short, too. Here is a short one:
      Given n (1 <= n <= 1018), You should solve for 
    g(g(g(n))) mod 109 + 7

      where
    g(n) = 3g(n - 1) + g(n - 2)

    g(1) = 1

    g(0) = 0

     

    Input
      There are several test cases. For each test case there is an integer n in a single line.
      Please process until EOF (End Of File).
     

    Output
      For each test case, please print a single line with a integer, the corresponding answer to this case.
     

    Sample Input
    0 1 2
     

    Sample Output
    0 1 42837
     


    这题要找循环节然后再用快速幂,第一层的循环节为1e9+7,第二层为222222224,第三层为183120,然后三个快速幂就行了。

    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    #define inf 99999999
    #define pi acos(-1.0)
    ll MOD;
    struct matrix{
        ll n,m,i;
        ll data[99][99];
        void init_danwei(){
            for(i=0;i<n;i++){
                data[i][i]=1;
            }
        }
    };
    
    matrix multi(matrix &a,matrix &b){
        ll i,j,k;
        matrix temp;
        temp.n=a.n;
        temp.m=b.m;
        for(i=0;i<temp.n;i++){
            for(j=0;j<temp.m;j++){
                temp.data[i][j]=0;
            }
        }
        for(i=0;i<a.n;i++){
            for(k=0;k<a.m;k++){
                if(a.data[i][k]>0){
                    for(j=0;j<b.m;j++){
                        temp.data[i][j]=(temp.data[i][j]+(a.data[i][k]*b.data[k][j])%MOD )%MOD;
                    }
                }
            }
        }
        return temp;
    }
    
    matrix fast_mod(matrix &a,ll n){
        matrix ans;
        ans.n=a.n;
        ans.m=a.m;
        memset(ans.data,0,sizeof(ans.data));
        ans.init_danwei();
        while(n>0){
            if(n&1)ans=multi(ans,a);
            a=multi(a,a);
            n>>=1;
        }
        return ans;
    }
    
    int main()
    {
        ll n,m,i,j;
        while(scanf("%lld",&n)!=EOF)
        {
            if(n==0){
                printf("0
    ");continue;
            }
            if(n==1){
                printf("1
    ");continue;
            }
            matrix a;
            matrix ans;
            if(n>=2){
                MOD=183120;
                a.n=a.m=2;
                a.data[0][0]=3;a.data[0][1]=1;
                a.data[1][0]=1;a.data[1][1]=0;
                ans=fast_mod(a,n-1);
                n=ans.data[0][0];
            }
            if(n>=2){
                MOD=222222224;
                a.n=a.m=2;
                a.data[0][0]=3;a.data[0][1]=1;
                a.data[1][0]=1;a.data[1][1]=0;
                ans=fast_mod(a,n-1);
                n=ans.data[0][0];
            }
            if(n>=2){
                MOD=1000000007;
                a.n=a.m=2;
                a.data[0][0]=3;a.data[0][1]=1;
                a.data[1][0]=1;a.data[1][1]=0;
                ans=fast_mod(a,n-1);
                n=ans.data[0][0];
            }
            printf("%lld
    ",n);
    
        }
        return 0;
    }
    


  • 相关阅读:
    MYSQL定时任务 触发器
    mybatis 学习
    SSM 记录
    环境变量配置
    servlet 拦截器 (filter)
    验证码
    jquery $.ajax({});参数详解
    maven打包忽略静态资源解决办法,dispatchServlet拦截静态资源请求的解决办法
    switch..case..
    HDU 1005 题解
  • 原文地址:https://www.cnblogs.com/herumw/p/9464598.html
Copyright © 2011-2022 走看看