zoukankan      html  css  js  c++  java
  • 快速排序算法的深入分析

    项目被搁置了, 看文档看的瞌睡了, 来研究一下算法, 第一次(可能之前学习过,忘掉了)看到这种算法, 觉得挺有意思, 遂来深入分析一下:

    第一步分为两段快速排序, 首先用数学公式退到一下遍历的次数(此处假设认为其他操作不耗时, 只有遍历操作耗时).

    那么普通排序的遍历次数是n * n-1, 分成两段的遍历次数是n + m * (m - 1) + (n - m - 1) * (n - m - 2) [1 < m < n],

    解释一下后面这个公式, 前面的n是进行分组, 后面的是分两段进行普通排序, m代表第一段的长度.

    (n * n-1) - (n + m * (m - 1) + (n - m - 1) * (n - m - 2) [1 < m < n]) = m * m - 2 *(n - 1) * (m + 2)

    看上去这个公式恒小于零, 推导证明就不做了, 绕啊绕的苦涩难懂,  而且这里忽略了其他操作的耗时, 所以还是直接用代码说话吧:

    import now from 'performance-now';
    
    // Generate Array to Sort
    const originArray = [];
    const max = 10;
    for (let k = 0; k < max; k++) {
      originArray[k] = Math.floor(Math.random() * max) + 1;
    }
    console.log("Origin       Array", JSON.stringify(originArray));
    console.log();
    
    const len = originArray.length;
    let normalSort = [], quickSort = [], normalTimes = 0, quickTimes = 0;
    
    var t0 = now();
    //Normal Sort Method
    normalSort = Array.from(originArray);
    for (let i = 0; i < len; i++) {
      for (let j = i + 1; j < len; j++) {
        normalTimes++;
        if (normalSort[i] < normalSort[j]) {
          let temp = normalSort[i];
          normalSort[i] = normalSort[j];
          normalSort[j] = temp;
        }
      }
    }
    
    var t1 = now();
    
    //Quick Sort Method
    const half = Math.floor(len / 2);
    let rightPart = [];
    for (let i = 0; i < len; i++) {
      if (originArray[i] > originArray[half]) {
        quickSort.push(originArray[i]);
      } else {
        rightPart.push(originArray[i]);
      }
    }
    const splitLen = quickSort.length;
    quickSort = quickSort.concat(rightPart);
    for (let i = 0; i < splitLen; i++) {
      for (let j = i + 1; j < splitLen; j++) {
        quickTimes++;
        if (quickSort[i] < quickSort[j]) {
          let temp = quickSort[i];
          quickSort[i] = quickSort[j];
          quickSort[j] = temp;
        }
      }
    }
    for (let i = splitLen; i < len; i++) {
      for (let j = i + 1; j < len; j++) {
        quickTimes++;
        if (quickSort[i] < quickSort[j]) {
          let temp = quickSort[i];
          quickSort[i] = quickSort[j];
          quickSort[j] = temp;
        }
      }
    }
    var t2 = now();
    
    console.log("Normal Sort Result", JSON.stringify(normalSort));
    console.log("Quick Sort  Result", JSON.stringify(quickSort));
    console.log();
    
    console.log("NormalSort took " + (t1 - t0) + " milliseconds. loop times" + normalTimes);
    console.log("QuickSort  took " + (t2 - t1) + " milliseconds. loop times" + quickTimes);
    

    下面分别是数组长度对应10、100、1000...的执行时间:

    可以看出, 除了1000次的时候, 慢一点, 其他的时候, 速度优势是很明显的.

    刚好最近在学Python, 于是翻译成python, 重新跑了一遍:

    import random
    import timeit
    import copy
    import math
    import json
    
    # Generate Array to Sort
    originArray = []
    maxN = 10
    for i in range(0, maxN):
        originArray.append(random.randint(1, maxN))
    
    lenN = len(originArray);
    normalSort = []
    quickSort = []
    normalTimes = 0
    quickTimes = 0
    
    t0 = timeit.default_timer()
    # Normal Sort Method
    normalSort = copy.copy(originArray)
    for i in range(0, lenN):
        for j in range(i + 1, lenN):
            normalTimes = normalTimes + 1
            if normalSort[i] < normalSort[j]:
                temp = normalSort[i]
                normalSort[i] = normalSort[j]
                normalSort[j] = temp
    
    t1 = timeit.default_timer()
    
    # Quick Sort Method
    half = math.floor(lenN / 2)
    rightPart = []
    for i in range(0, maxN):
        if originArray[i] > originArray[half]:
            quickSort.append(originArray[i])
        else:
            rightPart.append(originArray[i])
    
    splitLen = len(quickSort)
    quickSort = quickSort + rightPart
    for i in range(0, splitLen):
        for j in range(i + 1, splitLen):
            quickTimes = quickTimes + 1
            if quickSort[i] < quickSort[j]:
                temp = quickSort[i]
                quickSort[i] = quickSort[j]
                quickSort[j] = temp
    
    for i in range(splitLen, lenN):
        for j in range(i + 1, lenN):
            quickTimes = quickTimes + 1
            if quickSort[i] < quickSort[j]:
                temp = quickSort[i]
                quickSort[i] = quickSort[j]
                quickSort[j] = temp
    t2 = timeit.default_timer()
    
    # print("Normal Sort Result", json.dumps(normalSort));
    # print("Quick Sort  Result", json.dumps(quickSort));
    # console.log();
    
    print("NormalSort took {} milliseconds. loop times {}".format((t1 - t0) * 1000, normalTimes))
    print("QuickSort  took {} milliseconds. loop times {}".format((t2 - t1) * 1000, quickTimes))
    

    下面分别是数组长度对应10、100、1000...的执行时间:

     

     

     不继续了,总之快速排序是要快的.

    Python性能有点低啊. 哈哈

  • 相关阅读:
    MyEclipse安装教程以及配置server和运行起来
    倒计时代码-附效果图
    图片循环滚动代码-附效果图
    一个手机页面的导航代码,附效果图
    html电子书翻页效果代码,附效果演示
    唯美雪景雪花飘落代码,附效果演示
    非常漂亮的纯css3实现多彩侧边导航(非常流畅),附效果演示
    页面加密代码,附效果演示
    前端开发每天必学之HTML入门介绍
    仿网易官网顶部展出的大幅广告代码,附效果演示
  • 原文地址:https://www.cnblogs.com/jerryqi/p/11468428.html
Copyright © 2011-2022 走看看