zoukankan      html  css  js  c++  java
  • poj3181 Dollar Dayz

    Description

    Farmer John goes to Dollar Days at The Cow Store and discovers an unlimited number of tools on sale. During his first visit, the tools are selling variously for $1, $2, and $3. Farmer John has exactly $5 to spend. He can buy 5 tools at $1 each or 1 tool at $3 and an additional 1 tool at $2. Of course, there are other combinations for a total of 5 different ways FJ can spend all his money on tools. Here they are: 

            1 @ US$3 + 1 @ US$2
    
            1 @ US$3 + 2 @ US$1
    
            1 @ US$2 + 3 @ US$1
    
            2 @ US$2 + 1 @ US$1
    
            5 @ US$1
    Write a program than will compute the number of ways FJ can spend N dollars (1 <= N <= 1000) at The Cow Store for tools on sale with a cost of $1..$K (1 <= K <= 100).

    Input

    A single line with two space-separated integers: N and K.

    Output

    A single line with a single integer that is the number of unique ways FJ can spend his money.

    Sample Input

    5 3

    Sample Output

    5

    题意:给你两个数n,k,让你用1到k这k个数表示n,问有几种方法,本质是整数的拆分。因为最后结果比较大,超过long long ,所以用两个long long连接起来,设两个数组a[][],b[][]分别表示没有超过long long的部分以及超过long long 部分。

    其中a[n][m]表示n用一些数拆分,其中最大的数不超过m的方案数,画图可以看到,当n<m时,a[i][j]=a[i][i];当n>=m时,a[i][j]=(a[i][j-1]+a[i-j][j])%inf;初始化的时候要令a[0][i]=1,因为a[2][2]=a[0][2]+a[2][1];

    6
    5 + 1
    4 + 2, 4 + 1 + 1
    3 + 3, 3 + 2 + 1, 3 + 1 + 1 + 1
    2 + 2 + 2, 2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1
    1 + 1 + 1 + 1 + 1 + 1

    #include<stdio.h>
    #include<string.h>
    #define ll long long
    ll a[1006][106],b[1006][106];
    ll inf;
    int main()
    {
    int n,m,i,j;
    inf=1;
    for(i=1;i<=18;i++){
    inf*=10;
    }
    while(scanf("%d%d",&n,&m)!=EOF)
    {
    memset(a,0,sizeof(a));
    memset(b,0,sizeof(b));
    for(i=1;i<=m;i++){
    a[0][i]=1;
    }
    for(i=1;i<=n;i++){
    a[i][1]=1;
    }
    for(j=1;j<=m;j++){
    a[1][j]=1;
    }
    
    for(j=2;j<=m;j++){
    for(i=2;i<=n;i++){
    if(i<j){
    a[i][j]=a[i][i];
    b[i][j]=b[i][i];
    }
    else{
    a[i][j]=(a[i][j-1]+a[i-j][j])%inf;
    b[i][j]=b[i][j-1]+b[i-j][j]+(a[i][j-1]+a[i-j][j])/inf;
    }
    //printf("%d %d %d
    ",i,j,a[i][j]);
    }
    }
    if(b[n][m])
    printf("%lld",b[n][m]);
    printf("%lld
    ",a[n][m]);
    }
    return 0;
    }

    这题也可以用完全背包,并用高精度模拟,状态转移方程:dp[j]+=dp[j-w[i]]

    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    #define inf 0x7fffffff
    #define ll long long
    int dp[1005][60];
    void add(int a,int b){
        int i,j;
        for(i=1;i<=50;i++){
            if(dp[a][i]+dp[b][i]<=9){
                dp[a][i]=dp[a][i]+dp[b][i];
            }
            else{
                dp[a][i]=(dp[a][i]+dp[b][i])%10;
                dp[a][i+1]++;
            }
        }
    }
    
    int main()
    {
        int n,m,i,j,k,t;
        while(scanf("%d%d",&m,&k)!=EOF)
        {
            memset(dp,0,sizeof(dp));
            dp[0][1]=1;
            for(i=1;i<=k;i++){
                for(j=i;j<=m;j++){
                    add(j,j-i);
                }
            }
            t=50;
            while(t>=2 && dp[m][t]==0)t--;
    
            for(i=t;i>=1;i--){
                printf("%d",dp[m][i]);
            }
            printf("
    ");
        }
        return 0;
    }
    


  • 相关阅读:
    文件操作
    验证进程 及jion方法
    进程笔记
    网络通信名词总结
    网络QQ聊天代码实例
    网络通信 粘包和 缓冲器
    udp
    UVALive 3983 Robotruck (单调队列,dp)
    UVA 10891 Game of Sum (决策优化)
    Uva 10635 Prince and Princess (LCS变形LIS)
  • 原文地址:https://www.cnblogs.com/herumw/p/9464730.html
Copyright © 2011-2022 走看看