zoukankan      html  css  js  c++  java
  • A. Little Elephant and Interval

    The Little Elephant very much loves sums on intervals.

    This time he has a pair of integers l and r (l ≤ r). The Little Elephant has to find the number of such integers x (l ≤ x ≤ r), that the first digit of integer x equals the last one (in decimal notation). For example, such numbers as 101477474 or 9 will be included in the answer and 47253 or 1020 will not.

    Help him and count the number of described numbers x for a given pair l and r.

    Input

    The single line contains a pair of integers l and r (1 ≤ l ≤ r ≤ 1018) — the boundaries of the interval.

    Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cincout streams or the %I64dspecifier.

    Output

    On a single line print a single integer — the answer to the problem.

    Sample test(s)
    input
    2 47
    
    output
    12
    
    input
    47 1024
    
    output
    98
    看了其他博客都是数位dp,我用了不同的解法。对于n,m,分别算出cal(n),cal(m),即(0,n]符合结果的数,然后算出cal(n)-cal(m-1);
    #include<stdio.h>
    #include<string.h>
    int b[100]={0,1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101};
    __int64 pow(int n,int m)
    {
    	int i;
    	__int64 sum=1;
    	for(i=1;i<=m;i++){
    		sum=sum*n;
    	}
    	return sum;
    }
    
    
    __int64 cal(__int64 n)
    {
    	int len=0,i,j,sum;
    	if(n>=0 && n<=9)return n;
    	/*if(n>=10 && n<=99){            //这里两位数的可以在这里特判一下,时间会减少30ms;
    		for(i=1;i<=20;i++){
    			if(n>=b[i]){
    				sum=i;
    			}
    			else break;
    		}
    		return sum;
    	}*/
    	
    	
    	__int64 x=n,ans=0,t,num;
    	int a[100];
    	memset(a,0,sizeof(a));
    	while(x>0){
    		a[++len]=x%10;x=x/10;
    	}
    	ans=ans+9;
    	for(i=2;i<=len-1;i++){
    		ans=ans+9*pow(10,i-2);
    	}
    	if(len>2) ans=ans+a[len]*(pow(10,len-2))-pow(10,len-2);
    	
    	if(a[1]>=a[len]){
    		if(len>2)
    		{
    		ans=ans+(n-a[len]*pow(10,len-1))/10+1;
    		return ans;
    		}
    		else {ans=ans+a[len];return ans;}
    	}
    	t=n;
    	while((t%10)!=a[len]){         //如果最高位和最低位不同,那么先让这个数每次减一,减到最低位等于一开始的最高位,
    		t--;                   //然后看最高位的数是否改变,如果没有改变,那么总数加上除了首尾的中间一些数,如57895,取中间为789.
    	}                              //如果改变,则直接返回
    	if(len==2){
    		ans=ans+a[len]-1;return ans;
    	}
    	
    	if(t-a[len]*pow(10,len-1)<0){
    		return ans;
    	}
    	else{
    		ans=ans+(t-a[len]*pow(10,len-1))/10+1;
    		return ans;
    	}
    }
    
    
    int main()
    {
    	__int64 n,m,n1,m1;
    	int i,j;
    	//while(scanf("%I64d",&n)!=EOF)
    	while(scanf("%I64d%I64d",&n,&m)!=EOF)
    	{
    		printf("%I64d
    ",cal(m)-cal(n-1));
    		//printf("%I64d
    ",cal(n));
    	}
    	return 0;
    }
    
    
    
    
    
    今天又用数位dp的方法做了一下。
    思路:先预处理出dp[i][j]表示第i位为j符合要求的数的个数,然后就和普通的数位dp一样了,算的时候算[0,r)的个数,那么最后答案就是solve(m+1)-solve(n)。这里注意pow函数精度不够,所以要自己手写一个。
    
    
    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    #define inf 99999999
    #define pi acos(-1.0)
    #define maxn 1000050
    #define MOD 1000000007
    using namespace std;
    typedef long long ll;
    typedef long double ldb;
    ll po[25];
    void init1()
    {
        int i,j;
        po[0]=1;
        for(i=1;i<=18;i++)po[i]=po[i-1]*10;
    }
    
    ll dp[24][12];
    void init()
    {
        int i,j,k;
        memset(dp,0,sizeof(dp));
        for(j=0;j<=9;j++)dp[1][j]=1;
        for(i=2;i<=19;i++){
            for(j=0;j<=9;j++){
                if(j==0){
                    for(k=0;k<=9;k++){
                        dp[i][j]+=dp[i-1][k];
                    }
                }
                else{
                    dp[i][j]=po[i-2];
                }
            }
        }
    }
    ll solve(ll x)
    {
        int i,j,len=0;
        ll t=x;
        int wei[20];
        while(t){
            wei[++len]=t%10;
            t/=10;
        }
        wei[len+1]=0;
        if(len==1){
            return x;
        }
    
        ll sum=0;
        for(i=len;i>=1;i--){
            if(i==len){
                for(j=0;j<wei[i];j++){
                    sum+=dp[i][j];
                }
            }
            else{
                if(i==1){
                    if(wei[1]>wei[len] ){
                        sum++;
                    }
                }
                else{
                    for(j=0;j<wei[i];j++){
                        sum+=po[i-2];
                    }
                }
    
            }
        }
        return sum;
    }
    
    
    int main()
    {
        //freopen("o.txt","w",stdout);
        ll n,m;
        int i,j;
        init1();
        init();
        while(scanf("%I64d%I64d",&n,&m)!=EOF){
                printf("%lld
    ",solve(m+1)-solve(n) );
        }
        return 0;
    }
    


  • 相关阅读:
    670. Maximum Swap
    126. Word Ladder II
    695. Max Area of Island
    689. Maximum Sum of 3 Non-Overlapping Subarrays
    667. Beautiful Arrangement II
    前端开发-css
    前端开发-html
    mysql补充
    pythonl操作数据库
    mysql索引原理
  • 原文地址:https://www.cnblogs.com/herumw/p/9464839.html
Copyright © 2011-2022 走看看