zoukankan      html  css  js  c++  java
  • 【Oracle】SQL对某字段模糊查询,哪种方案最快?

    问题:有一张表hy_test,查找其字段name中包含ufo的记录数,下面哪种方案最快?

    A.select count(*) from hy_test where name like '%ufo%'

    B.select count(*) from hy_test where instr(name,'ufo')> 0

    C.with temp as (select rowid from hy_test t where t.name like '%ufo%')

    select count(*) from hy_test where rowid in (select rowid from temp)

    D.with temp as (select rowid from hy_test t where t.name like '%ufo%')

    select count(*) from hy_test a where exists (select rowid from temp where a.rowid=rowid)

    A是常规方案,B是网文推荐的方案,C D 是不常见但也有人推荐的方案。

    你心中的答案是哪个?

    我先给name加上了索引

     create index hy_test_name on hy_test(name);

    然后看各自的解释计划:

    select count(*) from hy_test where name like '%ufo%'
    Plan hash value: 2970624229
     
    --------------------------------------------------------------------------------------
    | Id  | Operation             | Name         | Rows  | Bytes | Cost (%CPU)| Time     |
    --------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT      |              |     1 |    62 |  3067   (1)| 00:00:01 |
    |   1 |  SORT AGGREGATE       |              |     1 |    62 |            |          |
    |*  2 |   INDEX FAST FULL SCAN| HY_TEST_NAME |  7426 |   449K|  3067   (1)| 00:00:01 |
    --------------------------------------------------------------------------------------
     
    Predicate Information (identified by operation id):
    ---------------------------------------------------
     
       2 - filter("NAME" LIKE U'%ufo%')
     
    Note
    -----
       - dynamic statistics used: dynamic sampling (level=2)
       
       
     
    select count(*) from hy_test where instr(name,'ufo')> 0
    Plan hash value: 2970624229
     
    --------------------------------------------------------------------------------------
    | Id  | Operation             | Name         | Rows  | Bytes | Cost (%CPU)| Time     |
    --------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT      |              |     1 |    62 |  3070   (1)| 00:00:01 |
    |   1 |  SORT AGGREGATE       |              |     1 |    62 |            |          |
    |*  2 |   INDEX FAST FULL SCAN| HY_TEST_NAME |  7426 |   449K|  3070   (1)| 00:00:01 |
    --------------------------------------------------------------------------------------
     
    Predicate Information (identified by operation id):
    ---------------------------------------------------
     
       2 - filter(INSTR("NAME",U'ufo')>0)
     
    Note
    -----
       - dynamic statistics used: dynamic sampling (level=2)
       
      
      
    with temp as (select rowid from hy_test t where t.name like '%ufo%')
    select count(*) from hy_test where rowid in (select rowid from temp)
    Plan hash value: 2970624229
     
    --------------------------------------------------------------------------------------
    | Id  | Operation             | Name         | Rows  | Bytes | Cost (%CPU)| Time     |
    --------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT      |              |     1 |    62 |  3067   (1)| 00:00:01 |
    |   1 |  SORT AGGREGATE       |              |     1 |    62 |            |          |
    |*  2 |   INDEX FAST FULL SCAN| HY_TEST_NAME |  7426 |   449K|  3067   (1)| 00:00:01 |
    --------------------------------------------------------------------------------------
     
    Predicate Information (identified by operation id):
    ---------------------------------------------------
     
       2 - filter("HY_TEST"."NAME" LIKE U'%ufo%')
     
    Note
    -----
       - dynamic statistics used: dynamic sampling (level=2)
       
       
    
    with temp as (select rowid from hy_test t where t.name like '%ufo%')
    select count(*) from hy_test a where exists (select rowid from temp where a.rowid=rowid)  
    Plan hash value: 2970624229
     
    --------------------------------------------------------------------------------------
    | Id  | Operation             | Name         | Rows  | Bytes | Cost (%CPU)| Time     |
    --------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT      |              |     1 |    62 |  3067   (1)| 00:00:01 |
    |   1 |  SORT AGGREGATE       |              |     1 |    62 |            |          |
    |*  2 |   INDEX FAST FULL SCAN| HY_TEST_NAME |  7426 |   449K|  3067   (1)| 00:00:01 |
    --------------------------------------------------------------------------------------
     
    Predicate Information (identified by operation id):
    ---------------------------------------------------
     
       2 - filter("A"."NAME" LIKE U'%ufo%')
     
    Note
    -----
       - dynamic statistics used: dynamic sampling (level=2)

    至少从解释计划来看,四种方案都是差不多的,Cost 都在3067左右,细究的话。instr方案还稍慢点,到了3070!

    drop index hy_test_name

    再把索引去掉比较:

    无索引
    select count(*) from hy_test where name like '%ufo%'
    Plan hash value: 1972112514
     
    ------------------------------------------------------------------------------
    | Id  | Operation          | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
    ------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT   |         |     1 |    62 |  3857   (1)| 00:00:01 |
    |   1 |  SORT AGGREGATE    |         |     1 |    62 |            |          |
    |*  2 |   TABLE ACCESS FULL| HY_TEST |  7426 |   449K|  3857   (1)| 00:00:01 |
    ------------------------------------------------------------------------------
     
    Predicate Information (identified by operation id):
    ---------------------------------------------------
     
       2 - filter("NAME" LIKE U'%ufo%')
     
    Note
    -----
       - dynamic statistics used: dynamic sampling (level=2)
       
       
    select count(*) from hy_test where instr(name,'ufo')> 0
     Plan hash value: 1972112514
     
    ------------------------------------------------------------------------------
    | Id  | Operation          | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
    ------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT   |         |     1 |    62 |  3860   (1)| 00:00:01 |
    |   1 |  SORT AGGREGATE    |         |     1 |    62 |            |          |
    |*  2 |   TABLE ACCESS FULL| HY_TEST |  7426 |   449K|  3860   (1)| 00:00:01 |
    ------------------------------------------------------------------------------
     
    Predicate Information (identified by operation id):
    ---------------------------------------------------
     
       2 - filter(INSTR("NAME",U'ufo')>0)
     
    Note
    -----
       - dynamic statistics used: dynamic sampling (level=2)
       
       
      EXPLAIN PLAN FOR
    with temp as (select rowid from hy_test t where t.name like '%ufo%')
    select count(*) from hy_test where rowid in (select rowid from temp)
    Plan hash value: 1972112514
     
    ------------------------------------------------------------------------------
    | Id  | Operation          | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
    ------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT   |         |     1 |    62 |  3857   (1)| 00:00:01 |
    |   1 |  SORT AGGREGATE    |         |     1 |    62 |            |          |
    |*  2 |   TABLE ACCESS FULL| HY_TEST |  7426 |   449K|  3857   (1)| 00:00:01 |
    ------------------------------------------------------------------------------
     
    Predicate Information (identified by operation id):
    ---------------------------------------------------
     
       2 - filter("HY_TEST"."NAME" LIKE U'%ufo%')
     
    Note
    -----
       - dynamic statistics used: dynamic sampling (level=2)
       
       
    
      EXPLAIN PLAN FOR
    with temp as (select rowid from hy_test t where t.name like '%ufo%')
    select count(*) from hy_test a where exists (select rowid from temp where a.rowid=rowid)
    Plan hash value: 1972112514
     
    ------------------------------------------------------------------------------
    | Id  | Operation          | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
    ------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT   |         |     1 |    62 |  3857   (1)| 00:00:01 |
    |   1 |  SORT AGGREGATE    |         |     1 |    62 |            |          |
    |*  2 |   TABLE ACCESS FULL| HY_TEST |  7426 |   449K|  3857   (1)| 00:00:01 |
    ------------------------------------------------------------------------------
     
    Predicate Information (identified by operation id):
    ---------------------------------------------------
     
       2 - filter("A"."NAME" LIKE U'%ufo%')
     
    Note
    -----
       - dynamic statistics used: dynamic sampling (level=2)

    现在看,instr仍然是最慢的,cost为3860,其它三个都在3857!

    结论:大体上四种方案都没什么差别,细究下,网红方案instr反而是最慢的,看上去最low的%ufo%并不慢

    对此,你能同意吗?面试时遇到这题你会怎么写?

    如果你想重复我的实验,可以用以下SQL创建表和数据:

    CREATE TABLE hy_test
    (
        id NUMBER not null primary key,
        name NVARCHAR2(60) not null,
        score NUMBER(4,0) NOT NULL,
        createtime TIMESTAMP (6) not null
    )
    
     Insert into hy_test
     select rownum,dbms_random.string('*',dbms_random.value(6,20)),dbms_random.value(0,20),sysdate from dual
     connect by level<=2000000
     order by dbms_random.random

    然后用一下Java程序改写数据:

    package recordchanger;
    
    import java.sql.Connection;
    import java.sql.DriverManager;
    import java.sql.ResultSet;
    import java.sql.SQLException;
    import java.sql.Statement;
    import java.text.DecimalFormat;
    import java.util.Random;
    import java.util.Set;
    import java.util.TreeSet;
    
    
    
    public class RecordChanger {
        public boolean changeOnePencent(String table) {
            Connection conn = null;
            Statement stmt = null;
            
            try{
                Class.forName(DBParam.Driver).newInstance();
                conn = DriverManager.getConnection(DBParam.DbUrl, DBParam.User, DBParam.Pswd);
                stmt = conn.createStatement();
                
                long startMs = System.currentTimeMillis();
                
                int totalCount=fetchExistCount(table,stmt);
                System.out.println("There are "+toEastNumFormat(totalCount)+" records in the table:'"+table+"'.");
                
                int changeCount=totalCount/100;
                System.out.println("There are "+toEastNumFormat(changeCount)+" records should be changed.");
                
                Set<Integer> idSet=fetchIdSet(totalCount,changeCount,table,stmt);
                System.out.println("There are "+toEastNumFormat(idSet.size())+" records in idSet.");
                
                int changed=updateRecords(idSet,table,stmt);
                System.out.println("There are "+toEastNumFormat(changed)+" records have been changed.");
                
                long endMs = System.currentTimeMillis();
                System.out.println("It takes "+ms2DHMS(startMs,endMs)+" to update 1% records of table:'"+table+"'.");
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                try {
                    stmt.close();
                    conn.close();
                } catch (SQLException e) {
                    System.out.print("Can't close stmt/conn because of " + e.getMessage());
                }
            }
            
            return false;
        }
        
        private int updateRecords(Set<Integer> idSet,String tableName,Statement stmt)  throws SQLException{
            int updated=0;
            
            for(int id:idSet) {
                String sql="update "+tableName+" set name='"+getRNDName()+"' where id='"+id+"' ";
                updated+= stmt.executeUpdate(sql);
            }
            
            return updated;
        }
        
        private String getRNDName() {
            String[] arr= {"Andy","Bill","Cindy","ufo","sufo","ufoa","ufot","AufoT","BufoT","1ufoufo","钱八","岳飞","关羽","刘备","曹操","张辽","虚竹","王语嫣"};
            int index=getRandom(0,arr.length);
            return arr[index];
        }
        
        
        // fetch a set of id which should be changed
        private Set<Integer> fetchIdSet(int totalCount,int changeCount,String tableName,Statement stmt)  throws SQLException{
            Set<Integer> idSet=new TreeSet<Integer>();
            
            while(idSet.size()<changeCount) {
                int id=getRandom(0,totalCount);
                if(idSet.contains(id)==false && isIdExist(id,tableName,stmt)) {
                    idSet.add(id);
                }
            }
            
            return idSet;
        }
        
        private boolean isIdExist(int id,String tableName,Statement stmt)  throws SQLException{
            String sql="select count(*) as cnt from "+tableName+" where id='"+id+"' ";
            
            ResultSet rs = stmt.executeQuery(sql);
            
            while (rs.next()) {
                int cnt = rs.getInt("cnt");
                return cnt==1;
            }
            
            rs.close();
            return false;
        }
        
        
        // get a random num between min and max
        private static int getRandom(int min, int max){
            Random random = new Random();
            int s = random.nextInt(max) % (max - min + 1) + min;
            return s;
        }
        
        // fetch exist record count of a table
        private int fetchExistCount(String tableName,Statement stmt)  throws SQLException{
            String sql="select count(*) as cnt from "+tableName+"";
            
            ResultSet rs = stmt.executeQuery(sql);
            
            while (rs.next()) {
                int cnt = rs.getInt("cnt");
                return cnt;
            }
            
            rs.close();
            return 0;
        }
        
        // 将整数在万分位以逗号分隔表示
        public static String toEastNumFormat(long number) {
            DecimalFormat df = new DecimalFormat("#,####");
            return df.format(number);
        }
        
        // change seconds to DayHourMinuteSecond format
        private static String ms2DHMS(long startMs, long endMs) {
            String retval = null;
            long secondCount = (endMs - startMs) / 1000;
            String ms = (endMs - startMs) % 1000 + "ms";
    
            long days = secondCount / (60 * 60 * 24);
            long hours = (secondCount % (60 * 60 * 24)) / (60 * 60);
            long minutes = (secondCount % (60 * 60)) / 60;
            long seconds = secondCount % 60;
    
            if (days > 0) {
                retval = days + "d" + hours + "h" + minutes + "m" + seconds + "s";
            } else if (hours > 0) {
                retval = hours + "h" + minutes + "m" + seconds + "s";
            } else if (minutes > 0) {
                retval = minutes + "m" + seconds + "s";
            } else {
                retval = seconds + "s";
            }
    
            return retval + ms;
        }
        
        public static void main(String[] args) {
            RecordChanger rc=new RecordChanger();
            rc.changeOnePencent("hy_test");
        }
        
        protected class DBParam {
            public final static String Driver = "oracle.jdbc.driver.OracleDriver";
            public final static String DbUrl = "jdbc:oracle:thin:@dev-dm-ufo.dev.un.local:2050/ufo";
            public final static String User = "ufo";
            public final static String Pswd = "test01";
        }
    }

    --END-- 2020-01-06 16:43

  • 相关阅读:
    移动端web
    递归求和
    json的基础了解
    冒泡排序的编程方法
    js面向对象
    1002,javascript的原型属性
    1001,instanceof关键字以及typeof关键字
    19,简述一下src与href的区别(不懂)
    531,<form>action属性
    530,css outline属性
  • 原文地址:https://www.cnblogs.com/heyang78/p/12156706.html
Copyright © 2011-2022 走看看