zoukankan      html  css  js  c++  java
  • 斐波那契额数列及青蛙跳台阶问题

    题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。

     斐波那契(Fibonacci)数列定义如下:

    效率很低的解法:

    long long Fibonacci_Solution1(unsigned int n)
    {
        if(n <= 0)
            return 0;
    
        if(n == 1)
            return 1;
    
        return Fibonacci_Solution1(n - 1) + Fibonacci_Solution1(n - 2);
    }
    

    改进的算法:从下往上计算。首先根据f(0)和f(1)算出f(2),再根据f(1)和f(2)算出f(3)。。。。。依此类推就可以算出第n项了。很容易理解,这种思路的时间复杂度是o(n)。实现代码如下:

    long long Fibonacci(unsigned n)
    {
    	int result[2] = {0 , 1};
    	if(n < 2)
    		return result[n];
    
    	long long fibMinusOne = 1;
    	long long fibMinusTwo = 0;
    	for(unsigned int i = 2 ; i <= n ; ++i)
    	{
    		fibN = fibMinusOne + fibMinusTwo;
    
    		fibMinusTwo = fibMinusOne;
    		fibMinusOne = fibN;
    	}
    	
    	return fibN;
    }
    
    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

    可以把n级台阶时的跳法看成是n的函数,记为f(n)。当n>2时,第一次跳的时候就有两种不同的选择:一是第一次只跳1级,此时跳法数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1);另一种选择是第一次跳2级,此时跳法数目等于后面剩下n-2级台阶的跳法数目,即为f(n-2)。因此,n级台阶的不同跳法的总数f(n)=f(n-1)+f(n-2)。分析到这里,不难看出这实际上就是斐波那契数列了。

    #include<iostream>
    using namespace std;
    
     long Fibonacci_Solution1(unsigned int n)
    {
        if(n <= 0)
            return 0;
    
        if(n == 1)
            return 1;
    
        return Fibonacci_Solution1(n - 1) + Fibonacci_Solution1(n - 2);
    }
    
    int main()
    {
        int n;
    	cin>>n;
    	cout<<Fibonacci_Solution1(n)<<endl;
       
       return 0;
    }
    

     在青蛙跳台阶的问题中,如果把条件改成:一只青蛙一次可以跳上1级台阶,也可以跳上2级。。。。。它也可以跳上n级,此时该青蛙跳上一个n级的台阶总共有多少种跳法?

    用数学归纳法可以证明f(n)=2n-1.

  • 相关阅读:
    在VS2010中如何添加MSCOMM控件,实现串口通讯
    GroupBox与Panel控件
    如何在VS2010中添加ActiveX控件及使用方法
    如何在vs2010中添加Picture控件
    四线开发经验谈
    socket 、 udp 和 tcp
    文本文件与二进制文件
    文件读写 (流)
    [CTSC1999]家园
    洛谷 P1251 餐巾计划问题
  • 原文地址:https://www.cnblogs.com/heyonggang/p/3405089.html
Copyright © 2011-2022 走看看