zoukankan      html  css  js  c++  java
  • 【cf1315E】E. Double Elimination(dp)

    传送门

    题意:
    现有(2^n,nleq 17)个参赛选手,开始(2cdot i,2cdot i-1)两两配对进行比赛。
    比赛规则:每场比赛中赢的人会进入胜者组,输的人会进入败者组,一个人如果输两次那么直接出局。最终胜者组和败者组最终会只剩下一个人,决赛时只进行一场,赢的人就胜利。
    现在你有(k)支心仪的队伍,你能够安排每场比赛的胜负,你希望看到尽量多的比赛中含有你的心仪队伍。
    问这样的比赛数量最多为多少。
    可以结合下图理解一下:

    思路:
    这个题初看不是很好思考,直接看了题解...接下来说说大概思路:

    • 因为共有(2^n)个人,结合题意可以考虑合并两个(2^{i-1})(2^i)
    • 如果想到了(dp),那么问题就转化为怎么定义(dp)状态和进行状态的合并。
    • 最显然的想法就是(dp_{i,j,k})表示长度为(2^i),起点为(j),最终剩下的队伍是否为心仪的队伍。但是这种状态的定义不能考虑到输掉一场的人。因为两段合并时,不仅有赢的跟赢的打,还有输的跟输的打,最终再打一场才能决定最后的那个人。
    • 因为上面的状态不能考虑到输的人,所以我们重新定义:(dp_{i,j,f_1,f_2})表示长度为(2^i),起点为(j),胜者组最后的队伍是否为心仪队伍,败者组最后的队伍是否为心仪队伍。
    • 这样的话我们就可以考虑到所有的情况,只是需要在(dp)时手动枚举一下,最后一共有(8)种情况。
    • 最终决赛的时候再单独判断一下即可。

    这个题难就难在状态的定义,以及想清楚比赛中所遇到的一些情况。
    细节见代码:

    /*
     * Author:  heyuhhh
     * Created Time:  2020/2/25 21:11:41
     */
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <vector>
    #include <cmath>
    #include <set>
    #include <map>
    #include <queue>
    #include <iomanip>
    #define MP make_pair
    #define fi first
    #define se second
    #define sz(x) (int)(x).size()
    #define all(x) (x).begin(), (x).end()
    #define INF 0x3f3f3f3f
    #define Local
    #ifdef Local
      #define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
      void err() { std::cout << '
    '; }
      template<typename T, typename...Args>
      void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
    #else
      #define dbg(...)
    #endif
    void pt() {std::cout << '
    '; }
    template<typename T, typename...Args>
    void pt(T a, Args...args) {std::cout << a << ' '; pt(args...); }
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> pii;
    //head
    const int N = (1 << 17) + 5, M = 18;
    
    int n, k;
    int dp[M][N][2][2];
    bool fan[N];
    
    void run(){
        cin >> n >> k;
        for(int i = 1; i <= k; i++) {
            int x; cin >> x;
            fan[x] = 1;   
        }
        memset(dp, -INF, sizeof(dp));
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= (1 << n); j += (1 << i)) {
                if(i == 1) {
                    dp[i][j][fan[j]][fan[j + 1]] = (fan[j] | fan[j + 1]);
                    dp[i][j][fan[j + 1]][fan[j]] = (fan[j] | fan[j + 1]);
                } else {
                    for(int x1 = 0; x1 < 2; x1++) {
                        for(int y1 = 0; y1 < 2; y1++) {
                            for(int x2 = 0; x2 < 2; x2++) {
                                for(int y2 = 0; y2 < 2; y2++) {
                                    int cost = dp[i - 1][j][x1][y1] + dp[i - 1][j + (1 << (i - 1))][x2][y2];
                                    if(x1 || x2) ++cost;
                                    if(y1 || y2) ++cost;
                                    
                                    dp[i][j][x1][x2] = max(dp[i][j][x1][x2], cost + (x2 | y1));
                                    dp[i][j][x1][x2] = max(dp[i][j][x1][x2], cost + (x2 | y2));
                                    
                                    dp[i][j][x1][y1] = max(dp[i][j][x1][y1], cost + (x2 | y1));
                                    dp[i][j][x1][y2] = max(dp[i][j][x1][y2], cost + (x2 | y2));
                                    
                                    dp[i][j][x2][x1] = max(dp[i][j][x2][x1], cost + (x1 | y1));
                                    dp[i][j][x2][x1] = max(dp[i][j][x2][x1], cost + (x1 | y2));
                                    
                                    dp[i][j][x2][y1] = max(dp[i][j][x2][y1], cost + (x1 | y1));
                                    dp[i][j][x2][y2] = max(dp[i][j][x2][y2], cost + (x1 | y2));
                                }
                            }
                        }
                    }
                }
            }   
        }
        int ans = 0;
        for(int i = 0; i < 2; i++) {
            for(int j = 0; j < 2; j++) {
                ans = max(ans, dp[n][1][i][j] + (i | j));
            }   
        }
        cout << ans << '
    ';
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(0); cout.tie(0);
        cout << fixed << setprecision(20);
        run();
        return 0;
    }
    
  • 相关阅读:
    NTP服务安装
    Teambition 的使用
    搭建svn服务器和测试
    通过NTP协议进行时间同步
    转利用OpenSSL库对Socket传输进行安全加密(RSA+AES)
    转源码编译安装MySQL5.6.12详细过程
    CentOS 6.4安装ffmpeg2.4.2 支持h.265
    转:CentOS 6.4 64-bit编译安装ffmpeg
    Work 2013 博客园挂博客
    FLASH和EEPROM的最大区别
  • 原文地址:https://www.cnblogs.com/heyuhhh/p/12363999.html
Copyright © 2011-2022 走看看