zoukankan      html  css  js  c++  java
  • 多项式全家桶

    贴个板子。

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    typedef vector <int> Poly;
    #define ri register int
    #define cs const
    #define sz(a) (a).size()
    #define all(a) (a).begin(), (a).end()
    const int MOD = 998244353, inv2 = (MOD + 1) >> 1;
    const int N = 4e5 + 5, M = (1 << 19); //四倍空间,M=2^x且M>=N
    typedef vector <int> Poly;
    #define ri register int
    #define cs const
    inline int add(int a, int b) {return a + b >= MOD ? a + b - MOD : a + b;}
    inline int dec(int a, int b) {return a < b ? a - b + MOD : a - b;}
    inline int mul(int a, int b) {return 1ll * a * b % MOD;}
    inline int qpow(int a, int b) {int res = 1; while(b) {if(b & 1) res = mul(res, a); a = mul(a, a); b >>= 1;} return res;}
    int rev[N], inv[N], pw[M], W[2][M];
    inline void init() {
        inv[0] = inv[1] = 1;
        for(ri i = 2; i < N; i++) inv[i] = mul(inv[MOD % i], MOD - MOD / i);
        int w0 = qpow(3, (MOD - 1) / M), w1 = qpow((MOD + 1) / 3, (MOD - 1) / M);
        W[0][0] = W[1][0] = 1;
        for(ri i = 1; i < M; i++) {
            W[0][i] = mul(W[0][i - 1], w0);
            W[1][i] = mul(W[1][i - 1], w1);
        }
    }      
    inline void init_rev(int len) {
        for(ri i = 0; i < len; i++) rev[i] = rev[i >> 1] >> 1 | ((i & 1) * (len >> 1));   
    }
    inline void NTT(Poly &a, int n, int op) {
        for(ri i = 0; i < n; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
        for(ri i = 1; i < n; i <<= 1) {
            int t = M / (i << 1), t2 = (op == -1 ? 1 : 0);
            for(ri j = 0; j < i; ++j) pw[j] = W[t2][j * t];
            int wn = (op == -1 ? W[1][i] : W[0][i]);
            for(ri j = 0; j < n; j += (i << 1)) {
                for(ri k = 0, x, y; k < i; ++k) {
                    x = a[j + k], y = mul(pw[k], a[j + k + i]);
                    a[j + k] = add(x, y);
                    a[j + k + i] = dec(x, y);
                }   
            }
        }   
        if(op == -1) for(ri i = 0; i < n; i++) a[i] = mul(a[i], inv[n]);
    }
    
    struct cn{
        int x, y, w;
        cn operator * (cn a){
            cn ans;
            ans.x = (1ll * x * a.x % MOD + 1ll * y * a.y % MOD * w % MOD) % MOD;
            ans.y = (1ll * x * a.y % MOD + 1ll * y * a.x % MOD) % MOD;
            ans.w = w;
            return ans;
        }
        int operator ^ (int b){
            cn ans, x = *this;
            ans.x = 1, ans.y = 0, ans.w = w;
            while(b) {
                if(b & 1) ans = ans * x;
                x = x * x;
                b >>= 1;
            }
            return ans.x;
        }
    };
    //求解n的二次剩余
    int sqrt_mod(int n) {
        if(n == 0) return 0;
        if(qpow(n, (MOD - 1) / 2) == MOD - 1) return -1;
        int a, w;
        while(true) {
            a = rand() % MOD;
            w = (1ll * a * a - n + MOD) % MOD;
            if(qpow(w, (MOD - 1) / 2) == MOD - 1) break;
        }
        cn x;
        x.x = a, x.y = 1, x.w = w;
        return x ^ ((MOD + 1) / 2);
    }
    inline print(cs Poly &a) {
        for(ri i = 0; i < sz(a); i++) cout << a[i] << ' ';
        cout << '
    ';   
    }
    
    inline Poly operator + (cs Poly &a, cs Poly &b) {
        Poly c = a; c.resize(max(sz(a), sz(b)));
        for(ri i = 0; i < sz(b); i++) c[i] = add(c[i], b[i]);
        return c;   
    }
    inline Poly operator - (cs Poly &a, cs Poly &b) {
        Poly c = a; c.resize(max(sz(a), sz(b)));
        for(ri i = 0; i < sz(b); i++) c[i] = dec(c[i], b[i]);
        return c;   
    }
    inline Poly operator * (Poly a, Poly b) {
        int n = sz(a), m = sz(b), l = 1;
        while(l < n + m - 1) l <<= 1;
        init_rev(l);
        a.resize(l), NTT(a, l, 1);
        b.resize(l), NTT(b, l, 1);
        for(ri i = 0; i < l; i++) a[i] = mul(a[i], b[i]);
        NTT(a, l, -1);
        a.resize(n + m - 1);
        return a;
    }
    inline Poly operator * (Poly a, int b) {
        for(ri i = 0; i < sz(a); i++) a[i] = mul(a[i], b);
        return a;   
    }
    
    //求导
    inline Poly Deriv(Poly a) {
        for(ri i = 0; i + 1 < sz(a); i++) a[i] = mul(a[i + 1], i + 1);
        a.pop_back();
        return a;   
    }
    
    //积分
    inline Poly Integ(Poly a) {
        a.push_back(0);
        for(ri i = sz(a) - 1; i; i--) a[i] = mul(a[i - 1], inv[i]);
        a[0] = 0;
        return a;   
    }
    
    //多项式取逆
    inline Poly Inv(cs Poly &a, int lim) {
     	Poly c, b(1, qpow(a[0], MOD - 2));
    	for(ri l = 4; (l >> 2) < lim; l <<= 1) {
    		init_rev(l);
    		c = a, c.resize(l >> 1);
    		c.resize(l), NTT(c, l, 1);
    		b.resize(l), NTT(b, l, 1);
    		for(ri i = 0; i < l; i++) b[i] = mul(b[i], dec(2, mul(c[i], b[i])));
    		NTT(b, l, -1);
    		b.resize(l >> 1);
    	}
    	b.resize(lim);
    	return b;      
    }
    inline Poly Inv(cs Poly &a) {return Inv(a, sz(a));}
    
    //多项式开根
    inline Poly Sqrt(cs Poly &a, int lim) {
     	Poly c, d, b(1, sqrt_mod(a[0]));
    	for(ri l = 4; (l >> 2) < lim; l <<= 1) {
    		init_rev(l);
    		c = a, c.resize(l >> 1);
    		d = Inv(b, l >> 1);
    		c.resize(l), NTT(c, l, 1);
    		d.resize(l), NTT(d, l, 1);
    		for(ri j = 0; j < l; j++) c[j] = mul(c[j], d[j]);
    		NTT(c, l, -1);
    		b.resize(l >> 1);
    		for(ri j = 0; j < (l >> 1); j++) b[j] = mul(add(c[j], b[j]), inv2);
    	}
    	b.resize(lim);
    	return b;   
    };
    inline Poly Sqrt(cs Poly &a) {return Sqrt(a, sz(a));}
    
    //多项式ln
    inline Poly Ln(Poly a, int lim){
    	a = Integ(Deriv(a) * Inv(a, lim));
    	a.resize(lim);
    	return a;
    }
    inline Poly Ln(cs Poly &a) {return Ln(a, sz(a));}
    
    //多项式exp
    inline Poly Exp(cs Poly &a, int lim){
    	Poly c, b(1, 1);
    	for(ri i = 2; (i >> 1) < lim; i <<= 1) {
    		c = Ln(b, i);
    		for(ri j = 0; j < i; j++) c[j] = dec(j < sz(a) ? a[j] : 0, c[j]);
    		c[0] = add(c[0], 1);
    		b = b * c;
    		b.resize(i);
    	}
    	b.resize(lim);
    	return b;
    }
    inline Poly Exp(cs Poly &a) {return Exp(a, sz(a));}
    
    //三角函数
    cs int w4 = qpow(3, (MOD - 1) / 4);
    inline Poly Cos(cs Poly &a, int lim) {
    	Poly c = a; c.resize(lim);
    	c = (Exp(c * w4) + Exp(c * (MOD - w4))) * inv2;
    	return c;
    }
    inline Poly Cos(cs Poly &a) {return Cos(a, sz(a));}
    inline Poly Sin(cs Poly &a, int lim){
    	Poly c = a; c.resize(lim);
    	c = (Exp(c * w4) - Exp(c * (MOD - w4))) * mul(inv2, qpow(w4, MOD - 2));
    	return c;
    }
    inline Poly Sin(cs Poly &a) {return Sin(a, sz(a));}
    
    //多项式除法
    inline Poly operator / (Poly a, Poly b) {
    	ri len = 1, deg = sz(a) - sz(b) + 1;
        reverse(all(a)), reverse(all(b));
    	while(len <= deg) len <<= 1;
    	b = Inv(b, len), b.resize(deg);
    	a = a * b, a.resize(deg);
        reverse(all(a));
    	return a;
    }
    inline Poly operator % (const Poly &a, const Poly &b) {
    	Poly c = a - (a / b) * b;
    	c.resize(sz(b) - 1);
    	return c;
    }
    
    //多项式k次方
    inline Poly Ksm(Poly a, int k, int lim){
    	a = Exp(Ln(a) * k);
    	a.resize(lim);
    	return a;
    }
    inline Poly Ksm(Poly &a, int k) {
        int t, x;
        for(ri i = 0; i < sz(a); i++) if(a[i] > 0) {
            t = a[i], x = i; break;   
        }
        if(t == 1 && x == 0) return Ksm(a, k, sz(a));
        Poly b(x + 1, 0); b[x] = t;
        a = a / b;
        a = Ksm(a, k, sz(a));
        a.resize(sz(a) + x * k);
        for(int i = sz(a) - 1; i >= 0; i--) {
            if(i - x * k < 0) a[i] = 0;
            else a[i] = a[i - x * k];
        }
        a = a * qpow(t, k);
        return a;
    }
    
    //分治FFT
    //f_i=sum_{j=0}^{i-1}f_j*g_{i-j},f[0]=1
    void DC_FFT(int l, int r, Poly &f, const Poly &g) {
        if(l >= r) return;
        int mid = (l + r) >> 1;
        DC_FFT(l, mid, f, g);
        Poly a(r - l), b(r - l);
        Poly c = f;
        for(int i = mid + 1; i <= r; i++) c[i] = 0;
        for(int i = 0; i < r - l; i++) a[i] = c[i + l], b[i] = g[i + 1];
        c = a * b;
        for(int i = mid + 1; i <= r; i++) f[i] = (f[i] + c[i - l - 1]) % MOD;
        DC_FFT(mid + 1, r, f, g);
    }
    
    //多点求值
    //已知a[i],f,求解b[i] = f(a[i])
    Poly P[N];
    void DC_NTT(int o, int l, int r, const Poly& a) {
        if(l == r) {
            P[o].resize(2);
            P[o][0] = MOD - a[l], P[o][1] = 1;
            return;
        }
        int mid = (l + r) >> 1;
        DC_NTT(o << 1, l, mid, a), DC_NTT(o << 1|1, mid + 1, r, a);
        P[o] = P[o << 1] * P[o << 1|1];
    }
    void DC_MOD(const Poly &f, const Poly &a, Poly &b, int o, int l, int r) {
        if(r - l <= 400) {
            for(int i = l; i <= r; i++) {
                int res = 0;
                for(int j = sz(f) - 1; j >= 0; j--) res = add(mul(res, a[i]), f[j]);
                b[i] = res;
            }   
            return;
        }
        int mid = (l + r) >> 1;
        Poly lf = f, rf = f;
        if(sz(lf) >= sz(P[o << 1])) lf = lf % P[o << 1];
        if(sz(rf) >= sz(P[o << 1|1])) rf = rf % P[o << 1|1];
        DC_MOD(lf, a, b, o << 1, l, mid), DC_MOD(rf, a, b, o << 1|1, mid + 1, r);
    }
    void getval(const Poly &f, const Poly &a, Poly &b) {
        DC_NTT(1, 0, sz(a) - 1, a);//插值时省略避免重复运算
        DC_MOD(f, a, b, 1, 0, sz(a) - 1);
    }
    
    //多项式快速插值
    //已知点对(x_i,y_i),求解插值多项式
    inline Poly DC_NTT2(int o, int l, int r, const Poly& v) {
        if(r == l) {
            Poly t(1, v[l]);
            return t;
        }
        int mid = (l + r) >> 1;
        Poly lf = DC_NTT2(o << 1, l, mid, v), rf = DC_NTT2(o << 1|1, mid + 1, r, v);
        return lf * P[o << 1|1] + rf * P[o << 1];
    }
    
    inline Poly fast_interpolation(const Poly &x, const Poly &y) {
        int n = sz(x);
        DC_NTT(1, 0, n - 1, x);
        Poly M = P[1], val(n);
        M = Deriv(M);
        getval(M, x, val);
        for(ri i = 0; i < n; i++) val[i] = mul(y[i], qpow(val[i], MOD - 2));
        return DC_NTT2(1, 0, n - 1, val);
    }
    
    int main() {
        init(); //记住要init
        return 0;   
    }
    
  • 相关阅读:
    SSH框架面试题
    创业起步?先收藏这份终极指南
    技术专题之-技术的概述
    技术专题之-技术概述的目录
    晶体管电路学习笔记
    转载 关于小波消失矩的理解
    关于射级跟随器中输出负载加重情况的理解
    小波分解和合成的simulink仿真
    小波变换工程实现原理总结
    小波变换的解释
  • 原文地址:https://www.cnblogs.com/heyuhhh/p/12568979.html
Copyright © 2011-2022 走看看