zoukankan      html  css  js  c++  java
  • 【hdu5909】Tree Cutting(FWT+树形dp)

    传送门

    题意:
    给定一颗(n)个结点的树,每个结点有个权值(v_i),定义一颗树的价值为以他为根节点的某棵树所有结点的异或值。
    现在对于所有的(k)([0,m))范围内,回答有多少个子树的价值为(k)
    (nleq 1000,mleq 2^{10})

    思路:
    我们设(F_i)为将(i)作为根节点时,构成的树的价值为(j)的方案数。
    那么我们考虑树形(displaystyle dp):(F_{u}=oplus (F_v+1)),其中(oplus)为异或符号。给(F_v)加一是因为我们当前这个子树可能不会选。注意我们还要算上(a_u)的贡献。
    那么就依次做异或卷积就行。

    /*
     * Author:  heyuhhh
     * Created Time:  2020/4/23 19:52:41
     */
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <cstdio>
    #include <vector>
    #include <cmath>
    #include <set>
    #include <map>
    #include <queue>
    #include <iomanip>
    #include <assert.h>
    #define MP make_pair
    #define fi first
    #define se second
    #define pb push_back
    #define sz(x) (int)(x).size()
    #define all(x) (x).begin(), (x).end()
    #define INF 0x3f3f3f3f
    #define Local
    #ifdef Local
      #define dbg(args...) do { cout << #args << " -> "; err(args); } while (0)
      void err() { std::cout << std::endl; }
      template<typename T, typename...Args>
      void err(T a, Args...args) { std::cout << a << ' '; err(args...); }
      template <template<typename...> class T, typename t, typename... A> 
      void err(const T <t> &arg, const A&... args) {
      for (auto &v : arg) std::cout << v << ' '; err(args...); }
    #else
      #define dbg(...)
    #endif
    using namespace std;
    typedef long long ll;
    typedef pair<int, int> pii;
    //head
    const int N = 1000 + 5, M = 10, MOD = 1e9 + 7;
    
    vector <int> G[N];
    
    int n, m;
    int v[N];
    int f[N][1 << M], g[N][1 << M];
    int a[1 << M], b[1 << M];
    
    void FWT_xor(int *a, int n, int op) {
        static int inv2 = (MOD + 1) / 2;
        for(int i = 1; i < n; i <<= 1)
            for(int p = i << 1, j = 0; j < n; j += p)
                for(int k = 0; k < i; k++) {
                    int X = a[j + k], Y = a[i + j + k];
                    a[j + k] = (X + Y) % MOD; a[i + j + k] = (X + MOD - Y) % MOD;
                    if(op == -1) a[j + k] = 1ll * a[j + k] * inv2 % MOD, a[i + j + k] = 1ll * a[i + j + k] * inv2 % MOD;
                }                
    }
    
    void dfs(int u, int fa) {
        for (int i = 0; i < m; i++) g[u][i] = 0;
        ++g[u][0];
        for (auto v : G[u]) if (v != fa) {
            dfs(v, u);
            for (int i = 0; i < m; i++) {
                a[i] = g[u][i];
                b[i] = f[v][i];   
            }
            ++b[0];
            FWT_xor(a, m, 1), FWT_xor(b, m, 1);
            for (int i = 0; i < m; i++) {
                a[i] = 1ll * a[i] * b[i] % MOD;   
            }
            FWT_xor(a, m, -1);
            for (int i = 0; i < m; i++) {
                g[u][i] = a[i];   
            }
        }
        for (int i = 0; i < m; i++) {
            f[u][i ^ v[u]] = g[u][i];
        }
    }
    
    int ans[1 << M];
    
    void run() {
        cin >> n >> m;
        memset(f, 0, sizeof(f));
        for (int i = 1; i <= n; i++) G[i].clear();
        for (int i = 1; i <= n; i++) cin >> v[i];
        for (int i = 1; i < n; i++) {
            int u, v; cin >> u >> v;
            G[u].push_back(v);
            G[v].push_back(u);   
        }
        dfs(1, 0);
        for (int j = 0; j < m; j++) {
            ans[j] = 0;
            for (int i = 1; i <= n; i++) {
                ans[j] = (ans[j] + f[i][j]) % MOD;
            }   
        }
        for(int i = 0; i < m; i++) {
            cout << ans[i] << " 
    "[i == m - 1];   
        }
    }
    
    int main() {
        ios::sync_with_stdio(false);
        cin.tie(0); cout.tie(0);
        cout << fixed << setprecision(20);
        int T; cin >> T; while(T--)
        run();
        return 0;
    }
    
  • 相关阅读:
    Synchronized和Lock的实现原理和锁升级
    如何禁止CPU指令重排
    MESI缓存一致性
    归并排序
    强软弱虚四种引用和ThreadLocal内存泄露
    VINS-Mono代码分析与总结(完整版)
    IMU误差模型与校准
    小感
    K8S conul部署
    Centos Consul集群及Acl配置
  • 原文地址:https://www.cnblogs.com/heyuhhh/p/12805591.html
Copyright © 2011-2022 走看看