Contest Info
Solved | A | B | C | D | E | F | G | H | I | J | K |
---|---|---|---|---|---|---|---|---|---|---|---|
11 / 13 | O | O | Ø | - | O | O | Ø | Ø | O | O | - |
- O 在比赛中通过
- Ø 赛后通过
- ! 尝试了但是失败了
- - 没有尝试
Solutions
A. Road To The 3rd Building
考虑每个长度对答案的贡献,并且将和式转化为前缀和的形式。那么容易发现对于每个长度(l),只有前面(0...l-1)是负贡献,后面(l+1...n)是正贡献。所以再统计前缀的前缀就可求出答案。
注意(l)的答案是具有对称性的。稍微手模一下找下规律即可。
Code
// Author : heyuhhh
// Created Time : 2020/08/06 13:05:06
#include<bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define pb push_back
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 2e5 + 5, MOD = 1e9 + 7;
int qpow(ll a, ll b) {
ll res = 1;
while(b) {
if (b & 1) res = res * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return res;
}
int n;
int a[N], ssum[N], sum[N];
void run() {
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i];
ssum[i] = (ssum[i - 1] + a[i]) % MOD;
sum[i] = (sum[i - 1] + ssum[i]) % MOD;
}
int ans = 0;
int p = (n + 1) / 2;
for (int l = 1; l <= n; l++) {
int res = 0;
if (l <= p) {
res = ((ll)sum[n] - sum[n - l] - sum[l - 1] + MOD + MOD) % MOD;
} else {
int qq = n - l + 1;
res = ((ll)sum[n] - sum[n - qq] - sum[qq - 1] + MOD + MOD) % MOD;
}
res = 1ll * res * qpow(l, MOD - 2) % MOD;
ans = (ans + res) % MOD;
}
ans = ans * 2 % MOD;
int fm = qpow(1ll * n * (n + 1) % MOD, MOD - 2);
ans = 1ll * ans * fm % MOD;
cout << ans << '
';
}
int main() {
#ifdef Local
freopen("input.in", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
int T; cin >> T; while(T--)
run();
return 0;
}
B. Little Rabbit's Equation
貌似模拟一下就行。
C. Borrow
题意:
给出三个数,每次最大的那个数会减一,然后另外两个数随机选一个加一。
求三个数都相等的期望操作次数。
思路:
首先令(k=frac{x+y+z}{3})。
一开始思路是(f_x)表示最大值从(x
ightarrow k)的期望次数,但是由于有些情况比较复杂,顶部的值变化情况较多。但是最小的值始终处于增大状态,所以我们定义(f_{x})表示最小值(x
ightarrow k)就行了。
然后就有(displaystyle f_x=1+frac{1}{2}f_x+frac{1}{2}f_{x+1}),由于(f_k=0),易知(f_x=2cdot(k-x))。
上述情况是在(x<kleq yleq z)的情况下,(xleq y<kleq z)的情况不好处理。这时我们其实可以直接枚举所有可能情况就行,比如我枚举(i)次使得(x)先到达(k)或者让(y)先到达,那么问题就转化为了第一种情况。由于我是枚举所有可能情况,所以概率也很好算。
细节见代码:
Code
// Author : heyuhhh
// Created Time : 2020/08/07 20:33:27
#include<bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define pb push_back
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 1e6 + 5, MOD = 998244353;
int qpow(ll a, ll b) {
ll res = 1;
while(b) {
if(b & 1) res = res * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return res;
}
int fac[N], inv[N];
void init() {
fac[0] = 1;
for(int i = 1; i < N; i++) fac[i] = 1ll * fac[i - 1] * i % MOD;
inv[N - 1] = qpow(fac[N - 1], MOD - 2);
for(int i = N - 2; i >= 0; i--) inv[i] = 1ll * inv[i + 1] * (i + 1) % MOD;
}
int C(int n, int m) {
if (n < m) return 0;
return 1ll * fac[n] * inv[m] % MOD * inv[n - m] % MOD;
}
void run() {
vector<int> a(3);
int sum = 0;
int k;
for (int i = 0; i < 3; i++) {
cin >> a[i];
sum += a[i];
}
if (sum % 3 != 0) {
cout << -1 << '
';
return;
}
sort(all(a));
k = sum / 3;
if (a[1] >= k) {
cout << 2 * (k - a[0]) << '
';
return;
}
int d1 = k - a[0], d2 = k - a[1];
int ans = 0;
int inv2 = qpow(2, MOD - 2);
int tt = inv2;
for (int i = 1, res; i < d1 + d2; i++) {
res = 1ll * tt * C(i - 1, d1 - 1) % MOD * (i + 2 * (d1 + d2 - i)) % MOD;
ans = (ans + res) % MOD;
res = 1ll * tt * C(i - 1, d2 - 1) % MOD * (i + 2 * (d1 + d2 - i)) % MOD;
ans = (ans + res) % MOD;
tt = 1ll * tt * inv2 % MOD;
}
cout << ans << '
';
}
int main() {
#ifdef Local
freopen("input.in", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
init();
int T; cin >> T; while(T--)
run();
return 0;
}
E. Fragrant numbers
猜测仅有前面几个数即可组合出所有的情况,并且最后的数的集合不大,所以直接暴力区间dp转移,打个表然后交就行。
F. A Very Easy Graph Problem
最后答案是一颗生成树,那么就将问题转化为了在生成树上统计黑白点对的问题。
Code
// Author : heyuhhh
// Created Time : 2020/08/06 12:24:17
#include<bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define pb push_back
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 1e5 + 5, MOD = 1e9 + 7;
int pow2[N];
void init() {
pow2[0] = 1;
for (int i = 1; i < N; i++) {
pow2[i] = 1ll * pow2[i - 1] * 2 % MOD;
}
}
int n, m;
vector<pii> G[N];
int f[N];
int find(int x) {
return f[x] == x ? f[x] : f[x] = find(f[x]);
}
bool merge(int x, int y) {
int fx = find(x), fy = find(y);
if (fx != fy) {
f[fx] = fy;
return true;
}
return false;
}
void add(int& x, int y) {
x += y;
if (x >= MOD) x -= MOD;
}
void del(int& x, int y) {
x -= y;
if (x < 0) x += MOD;
}
int sz[N];
int a[N], tot;
int sum;
void dfs(int u, int fa) {
sz[u] = 1 - a[u];
for (auto it : G[u]) {
int v = it.fi, w = it.se;
if (v != fa) {
dfs(v, u);
add(sum, 1ll * w * sz[v] % MOD);
sz[u] += sz[v];
}
}
}
int ans;
void dfs2(int u, int fa) {
if (a[u] == 1) {
add(ans, sum);
}
for (auto it : G[u]) {
int v = it.fi, w = it.se;
if (v != fa) {
add(sum, 1ll * w * (tot - sz[v]) % MOD);
del(sum, 1ll * w * sz[v] % MOD);
dfs2(v, u);
del(sum, 1ll * w * (tot - sz[v]) % MOD);
add(sum, 1ll * w * sz[v] % MOD);
}
}
}
void run() {
cin >> n >> m;
for (int i = 1; i <= n; i++) {
f[i] = i;
G[i].clear();
}
ans = sum = tot = 0;
for (int i = 1; i <= n; i++) {
cin >> a[i];
tot += 1 - a[i];
}
for (int i = 1; i <= m; i++) {
int u, v;
cin >> u >> v;
if (merge(u, v)) {
G[u].push_back(MP(v, pow2[i]));
G[v].push_back(MP(u, pow2[i]));
}
}
dfs(1, 0);
dfs2(1, 0);
cout << ans << '
';
}
int main() {
#ifdef Local
freopen("input.in", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
init();
int T; cin >> T; while(T--)
run();
return 0;
}
G. A Very Easy Math Problem
题意:
给定(n,x,k),求:
其中(f(t))表示是否存在一个大于(1)的数(p),使得(p^2|t)。(gcd)我就直接简写了。
思路:
这种题就是推推推,都是套路。
然后后面一部分通过类似于调和级数的东西预处理出来,(S)也可以直接预处理。
那么数论分块一下就没了。
Code
// Author : heyuhhh
// Created Time : 2020/08/06 14:43:02
#include<bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define pb push_back
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 2e5 + 5, MOD = 1e9 + 7;
int qpow(ll a, ll b) {
ll res = 1;
while(b) {
if (b & 1) res = res * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return res;
}
int mu[N], p[N], phi[N];
bool chk[N];
void init() {
mu[1] = phi[1] = 1;
int cnt = 0, k = N - 1;
for(int i = 2; i <= k; i++) {
if(!chk[i]) p[++cnt] = i, mu[i] = -1, phi[i] = i - 1;
for(int j = 1; j <= cnt && i * p[j] <= k; j++) {
chk[i * p[j]] = 1;
if(i % p[j] == 0) {mu[i * p[j]] = 0; phi[i * p[j]] = phi[i] * p[j]; break;}
mu[i * p[j]] = -mu[i]; phi[i * p[j]] = phi[i] * (p[j] - 1);
}
}
}
bool f[N];
int F[N], G[N];
int S[N], val[N];
void run() {
int T, k, x;
cin >> T >> k >> x;
for (int i = 1; i < N; i++) {
f[i] = 1;
}
for (int t = 2; 1ll * t * t < N; t++) {
for (int i = 1; 1ll * t * t * i < N; i++) {
f[i * t * t] = 0;
}
}
for (int i = 1; i < N; i++) {
for (int j = i; j < N; j += i) {
F[j] = (F[j] + 1ll * mu[i] * f[j / i] % MOD * (j / i) % MOD + MOD) % MOD;
}
}
for (int i = 1; i < N; i++) {
F[i] = 1ll * F[i] * qpow(i, 1ll * k * x) % MOD;
G[i] = (G[i - 1] + F[i]) % MOD;
}
for (int i = 1; i < N; i++) {
val[i] = (val[i - 1] + qpow(i, k)) % MOD;
S[i] = qpow(val[i], x);
}
while (T--) {
int n;
cin >> n;
int ans = 0;
for (int l = 1, r; l <= n; l = r + 1) {
r = n / (n / l);
ans = (ans + 1ll * S[n / l] * (G[r] - G[l - 1] + MOD) % MOD) % MOD;
}
cout << ans << '
';
}
}
int main() {
#ifdef Local
freopen("input.in", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
init();
run();
return 0;
}
H. Yukikaze and Smooth numbers
题意:
定义一个(k-number)为所有的质因子大小都不超过(k)的数。
现在问(1)~(n)中有多少个(k-number)。
思路:
趣题,考察对min25筛的理解。
考虑通过min25筛直接筛出符合条件的数的个数。
仔细思考min25筛的第二部分,我们是分两种情况统计,质数和合数,质数直接利用预处理得到的信息计算,合数则是枚举递归下去(完全积性)。合数部分是不变的,一般只需要修改质数部分,这里我们直接把大于k的去掉就行了。
因为要统计前缀质数个数,所以第一部分就预处理质数个数和就行。
细节见代码:
Code
// Author : heyuhhh
// Created Time : 2020/08/07 16:50:26
#include<bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define pb push_back
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
void err(int x) {cerr << x;}
void err(long long x) {cerr << x;}
void err(double x) {cerr << x;}
void err(char x) {cerr << '"' << x << '"';}
void err(const string &x) {cerr << '"' << x << '"';}
void _print() {cerr << "]
";}
template<typename T, typename V>
void err(const pair<T, V> &x) {cerr << '{'; err(x.first); cerr << ','; err(x.second); cerr << '}';}
template<typename T>
void err(const T &x) {int f = 0; cerr << '{'; for (auto &i: x) cerr << (f++ ? "," : ""), err(i); cerr << "}";}
template <typename T, typename... V>
void _print(T t, V... v) {err(t); if (sizeof...(v)) cerr << ", "; _print(v...);}
#ifdef Local
#define dbg(x...) cerr << "[" << #x << "] = ["; _print(x)
#else
#define dbg(x...)
#endif
//head
const int N = 1e5 + 5;
ll n, k;
ll sum1[N], sum2[N], prime[N];
ll w[N], ind1[N], ind2[N];
ll g1[N], g2[N];
bool chk[N];
int tot, cnt;
void pre(int n) { // sqrt
chk[1] = 1;
for(int i = 1; i <= n; i++) {
if(!chk[i]) {
prime[++tot] = i;
sum1[tot] = sum1[tot - 1] + 1;
}
for(int j = 1; j <= tot && prime[j] * i <= n; j++) {
chk[i * prime[j]] = 1;
if(i % prime[j] == 0) break;
}
}
}
int f(int x, int y) {
return x <= k;
}
void calc_g(ll n) {
int z = sqrt(n + 0.5);
for(ll i = 1, j; i <= n; i = j + 1) {
j = n / (n / i);
w[++cnt] = n / i;
g1[cnt] = w[cnt] - 1;
if(n / i <= z) ind1[n / i] = cnt;
else ind2[n / (n / i)] = cnt;
}
for(int i = 1; i <= tot; i++) {
for(int j = 1; j <= cnt && prime[i] * prime[i] <= w[j]; j++) {
ll tmp = w[j] / prime[i], k;
if(tmp <= z) k = ind1[tmp]; else k = ind2[n / tmp];
g1[j] -= (g1[k] - sum1[i - 1]);
}
}
}
ll num;
ll S(ll x, int y) { // 2~x >= P_y
if(x <= 1 || prime[y] > x) return 0;
int z = sqrt(n + 0.5);
ll ans;
if (k <= x) {
ans = num - sum1[y - 1];
} else {
ll t = (x <= z ? ind1[x] : ind2[n / x]);
ans = g1[t] - sum1[y - 1];
}
ans = max(ans, 0ll);
ll tmp = ans;
for(int i = y; i <= tot && prime[i] * prime[i] <= x ; i++) {
ll pe = prime[i];
for(int e = 1; pe * prime[i] <= x; ++e, pe = pe * prime[i]) {
ans += f(prime[i], e) * S(x / pe, i + 1) + f(prime[i], e + 1);
}
}
return ans;
}
void run() {
tot = cnt = 0;
memset(chk, 0, sizeof(chk));
cin >> n >> k;
int z = sqrt(k + 0.5);
pre(z);
calc_g(k);
num = g1[ind2[1]];
tot = cnt = 0;
memset(chk, 0, sizeof(chk));
z = sqrt(n + 0.5);
pre(z);
calc_g(n);
cout << S(n, 1) + 1 << '
';
}
int main() {
#ifdef Local
freopen("input.in", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
int T; cin >> T; while(T--)
run();
return 0;
}
I. Divisibility
签到。
J. Expectation
根据期望的线性性质,可以直接对二进制拆位然后求每一位对答案的贡献。
那么对于每一位找出所有这一位为(1)的边然后跑个生成树计数即是有贡献的所有情况,总情况也是对于所有边跑个生成树计数。
那么概率易求,乘以权值就是当前这一位对答案的贡献。
注意邻接矩阵是广义的邻接矩阵。
Code
// Author : heyuhhh
// Created Time : 2020/08/06 13:38:39
#include<bits/stdc++.h>
#define MP make_pair
#define fi first
#define se second
#define pb push_back
#define sz(x) (int)(x).size()
#define all(x) (x).begin(), (x).end()
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
//head
const int N = 100 + 5, M = 10000 + 5, MOD = 998244353;
int qpow(ll a, ll b) {
ll res = 1;
while(b) {
if (b & 1) res = res * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return res;
}
int n, m;
ll b[N][N];
int g[N][N];
ll Det(int n){
int i,j,k;
ll ret = 1;
for(i=2;i<=n;i++){
for(j = i+1;j <= n;j++){
while(b[j][i]){
ll tmp=b[i][i]/b[j][i];//不存在除不尽的情况
for(k = i;k <= n;k++){
b[i][k] = (b[i][k] - tmp*b[j][k])%MOD;
if(b[i][k]<0) b[i][k]+=MOD;
}
swap(b[i],b[j]);
ret = -ret;
}
}
if(!b[i][i]) return -1;
ret = ret * b[i][i]%MOD;
}
if(ret < 0) ret += MOD;
return ret;
}
int f[N];
int find(int x) {
return f[x] == x ? f[x] : f[x] = find(f[x]);
}
bool merge(int x, int y) {
int fx = find(x), fy = find(y);
if (fx != fy) {
f[fx] = fy;
return true;
}
return false;
}
void run() {
cin >> n >> m;
vector<pair<pii, int>> edges;
memset(b, 0, sizeof(b));
memset(g, 0, sizeof(g));
for (int i = 1; i <= m; i++) {
int u, v, w;
cin >> u >> v >> w;
edges.push_back(MP(MP(u, v), w));
++g[u][v], ++g[v][u];
++b[u][u], ++b[v][v];
--b[u][v], --b[v][u];
}
int ans = 0;
ll tot = Det(n);
int fm = qpow(tot, MOD - 2);
for (int k = 30; k >= 0; k--) {
memset(b, 0, sizeof(b));
memset(g, 0, sizeof(g));
for (int i = 1; i <= n; i++) {
f[i] = i;
}
int cnt = 0;
for (auto& it : edges) {
int u = it.fi.fi, v = it.fi.se, w = it.se;
if (w >> k & 1) {
++g[u][v], ++g[v][u];
++b[u][u], ++b[v][v];
--b[u][v], --b[v][u];
if (merge(u, v)) ++cnt;
}
}
if (cnt < n - 1) continue;
ll q = Det(n);
if (q == -1) continue;
int res = 1ll * (1 << k) * q % MOD * fm % MOD;
ans = (ans + res) % MOD;
}
cout << ans << '
';
}
int main() {
#ifdef Local
freopen("input.in", "r", stdin);
#endif
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cout << fixed << setprecision(20);
int T; cin >> T; while(T--)
run();
return 0;
}