zoukankan      html  css  js  c++  java
  • 【LOJ10121】与众不同

    【LOJ10121】与众不同

    题面

    LOJ

    题解

    这题是_(tham)(ztl)他们做的,然而这道题™居然还想了蛮久。。。

    首先可以尺取出一个位置(i)上一个合法的最远位置(pre_i)

    而对于一个询问((l,r)),因为(pre_i)是单调的

    所以可以二分出(pre_igeq l)的第一个位置(mid)

    (st)表维护一下区间(i-pre_i+1)最大值(qmax)

    (ans=max(mid-l,qmax(mid,r)))

    注意判断一下边界情况

    代码

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring> 
    #include <cmath> 
    #include <algorithm>
    using namespace std; 
    inline int gi() {
        register int data = 0, w = 1;
        register char ch = 0;
        while (!isdigit(ch) && ch != '-') ch = getchar(); 
        if (ch == '-') w = -1, ch = getchar();
        while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar(); 
        return w * data; 
    } 
    const int MAX_N = 200005;
    const int MAX_LOG_N = 19; 
    const int MAX_V = 1e6;
    int bln[MAX_V << 1 | 1]; 
    int N, M, a[MAX_N], pre[MAX_N]; 
    int st[MAX_N][MAX_LOG_N], lg2[MAX_N]; 
    void Prepare() {
        int l = 1, r = 0; 
        do { 
            bln[a[++r]]++; 
            while (bln[a[r]] > 1) --bln[a[l++]]; 
            pre[r] = l; 
        } while (l <= N && r <= N && l <= r);
        for (int i = 1; i <= N; i++) st[i][0] = i - pre[i] + 1; 
        for (int j = 1; j <= 18; j++) 
            for (int i = 1; i + (1 << j) - 1 <= N; i++)
                st[i][j] = max(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]); 
        for (int i = 2; i <= MAX_N; i++) lg2[i] = lg2[i >> 1] + 1; 
    } 
    int qmax(int l, int r) { 
        int t = lg2[r - l + 1]; 
        return max(st[l][t], st[r - (1 << t) + 1][t]); 
    }
    int solve(int ql, int qr) {
        if (qmax(qr, qr) >= qr - ql + 1) return qr - ql + 1; 
        int l = ql, r = qr, res = qr; 
        while (l <= r) {
            int mid = (l + r) >> 1; 
            if (ql <= pre[mid]) res = mid, r = mid - 1; 
            else l = mid + 1; 
        }
        return max(res - ql, qmax(res, qr)); 
    }  
    int main () {
        N = gi(), M = gi(); 
        for (int i = 1; i <= N; i++) a[i] = gi() + MAX_V; 
        Prepare();
        while (M--) { 
            int l = gi() + 1, r = gi() + 1;
            printf("%d
    ", solve(l, r)); 
        } 
        return 0; 
    } 
    
  • 相关阅读:
    leetcode297
    leetcode4
    leetcode23
    leetcode72
    leetcode239
    leetcode42
    leetcode128
    leetcode998
    SAP MM GR-based IV, 无GR不能IV?
    小科普:机器学习中的粒子群优化算法!
  • 原文地址:https://www.cnblogs.com/heyujun/p/10190882.html
Copyright © 2011-2022 走看看