【CF241E】Flights
题面
题解
对于原来的图,如果一条边不出现在(1)到(n)的路径上面,直接(ban)掉即可。
那么考虑一条边(u ightarrow v),一定满足(1leq dis_v-dis_uleq 2),其中(dis_u,dis_v)表示(1)到(u,v)的最短路。直接根据这个性质跑差分约束即可,一条边的答案即为(dis_v-dis_u)。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int INF = 1e9;
const int MAX_N = 1e3 + 5, MAX_M = 5e3 + 5;
struct Edge { int u, v; } a[MAX_M];
struct Graph { int to, cost; } ;
vector<Graph> G[MAX_N];
vector<int> E[MAX_N];
int N, M, vis[MAX_N];
void bfs(int s, int op) {
queue<int> que;
que.push(s), ++vis[s];
while (!que.empty()) {
int x = que.front(); que.pop();
for (auto v : E[x])
if (vis[v] == op) ++vis[v], que.push(v);
}
}
int dis[MAX_N];
bool inq[MAX_N];
bool spfa() {
static int cnt[MAX_N];
queue<int> que; que.push(1), inq[1] = 1, ++cnt[1];
for (int i = 2; i <= N; i++) dis[i] = INF;
while (!que.empty()) {
int x = que.front(); que.pop();
for (auto e : G[x]) {
int v = e.to, w = e.cost;
if (dis[x] + w < dis[v]) {
dis[v] = dis[x] + w;
if (!inq[v]) ++cnt[v], inq[v] = 1, que.push(v);
if (cnt[v] >= N) return 0;
}
}
inq[x] = 0;
}
return 1;
}
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
N = gi(), M = gi();
for (int i = 1; i <= M; i++) {
a[i].u = gi(), a[i].v = gi();
E[a[i].u].push_back(a[i].v);
}
bfs(1, 0);
for (int i = 1; i <= N; i++) E[i].clear();
for (int i = 1; i <= M; i++) E[a[i].v].push_back(a[i].u);
bfs(N, 1);
for (int i = 1; i <= M; i++) {
int u = a[i].u, v = a[i].v;
if (vis[u] != 2 || vis[v] != 2) continue;
G[u].push_back((Graph){v, 2});
G[v].push_back((Graph){u, -1});
}
if (spfa()) puts("Yes");
else return puts("No") & 0;
for (int i = 1; i <= M; i++) {
int u = a[i].u, v = a[i].v;
if (vis[u] != 2 || vis[v] != 2) puts("1");
else printf("%d
", dis[v] - dis[u]);
}
return 0;
}