【AGC009C】Division into Two
题面
题解
首先有一个比较显然的(n^2)算法:
设(f_{i,j})表示(A)序列当前在第(i)个,(B)序列当前在第(j)个的方案数,发现(i,j)大小没有限制不是很好转移,于是再设一个(g_{i,j})表示(B)序列当前在第(i)个,(A)序列当前在第(j)个的方案数的,这样子我们就可以钦定(i>j)了,转移会方便许多。
转移如下:
[left{
egin{aligned}
f_{i+1,j}leftarrow f_{i,j}(a_{i+1}-a_igeq A)\
g_{i+1,i}leftarrow f_{i,j}(a_{i+1}-a_jgeq B)\
g_{i+1,j}leftarrow g_{i,j}(a_{i+1}-a_igeq B)\
f_{i+1,i}leftarrow g_{i,j}(a_{i+1}-a_jgeq A)
end{aligned}
ight.
]
然后让我们想一想怎么优化这个东西。
不妨设(A<B),则对于(forall igeq 3,a_i-a_{i-2}geq A),对于不符合的我们直接判掉。
设(f_i)表示当前(B)序列在(i)的方案数,我们对于可以转移过来的(j),必须要满足(a_i-a_jgeq B),而对于(forall kin [j+1,i-1]),则要满足(a_k-a_{k-1}geq A),考虑到这样的(j)是一个区间,而区间左右端点单调,我们把这个区间搞出来然后前缀和优化即可。
复杂度(O(n))。
代码
\O(n^2)
int main () {
scanf("%d %lld %lld", &N, &A, &B);
if (A > B) swap(A, B);
for (int i = 1; i <= N; i++) scanf("%lld", a + i);
for (int i = 3; i <= N; i++) if (a[i] - a[i - 2] < A) return puts("0") & 0;
a[0] = -1e18;
int ans = 0;
f[1][0] = 1, g[1][0] = 1;
for (int i = 1; i <= N; i++)
for (int j = 0; j < i; j++) {
if (a[i + 1] - a[i] >= A) f[i + 1][j] = (f[i + 1][j] + f[i][j]) % Mod;
if (a[i + 1] - a[j] >= B) g[i + 1][i] = (g[i + 1][i] + f[i][j]) % Mod;
if (a[i + 1] - a[i] >= B) g[i + 1][j] = (g[i + 1][j] + g[i][j]) % Mod;
if (a[i + 1] - a[j] >= A) f[i + 1][i] = (f[i + 1][i] + g[i][j]) % Mod;
}
for (int i = 0; i < N; i++) ans = (ans + (f[N][i] + g[N][i]) % Mod) % Mod;
printf("%d
", ans);
return 0;
}
\O(n)
int main () {
scanf("%d %lld %lld", &N, &A, &B);
for (int i = 1; i <= N; i++) scanf("%lld", a + i);
if (A > B) swap(A, B);
for (int i = 3; i <= N; i++) if (a[i] - a[i - 2] < A) return puts("0") & 0;
f[0] = s[0] = 1;
int l = 0, r = 0;
for (int i = 1; i <= N; i++) {
while (r < i - 1 && a[i] - a[r + 1] >= B) ++r;
if (l <= r) f[i] = (s[r] - (l ? s[l - 1] : 0) + Mod) % Mod;
s[i] = (s[i - 1] + f[i]) % Mod;
if (i != 1 && a[i] - a[i - 1] < A) l = i - 1;
}
int ans = 0;
for (int i = N; ~i; i--) {
ans = (ans + f[i]) % Mod;
if (i != N && a[i + 1] - a[i] < A) break;
}
printf("%d
", ans);
return 0;
}