zoukankan      html  css  js  c++  java
  • 【LG5018】[NOIP2018pj]对称的二叉树

    【LG5018】[NOIP2018pj]对称的二叉树

    题面

    洛谷

    题解

    看到这一题全都是用(O(nlogn))的算法过的

    考场上写(O(n))算法的我很不开心

    然后就发了此篇题解。。。

    首先我们可以像树上莫队一样按照 左-右-根 的顺序将这棵树的欧拉序跑下来,

    记下开始访问点(x)(dfs)(L[x]),和回溯时的(dfs)(R[x])

    再将记录欧拉序的数组记为(P)

    void dfs(int x) { 
        P[L[x] = ++cnt] = x; 
        if (t[x].ch[0]) dfs(t[x].ch[0]); 
        if (t[x].ch[1]) dfs(t[x].ch[1]); 
        P[R[x] = ++cnt] = x; 
    	t[x].size = t[t[x].ch[0]].size + t[t[x].ch[1]].size + 1; 
    } 
    

    统计出数组(P)的两个哈希值,一个是记录点权((hs1[0][x])),

    另一个是记录当前点是左儿子还是右儿子((hs2[0][x]))

    for (int i = 1; i <= cnt; i++) hs1[0][i] = hs1[0][i - 1] * base + t[P[i]].v; 
    for (int i = 1; i <= cnt; i++) hs2[0][i] = hs2[0][i - 1] * base + get(P[i]); 
    

    再将这棵树按照 右-左-根 的顺序将这棵树的另一个欧拉序跑下来(记得清空),

    记下开始访问点(x)(dfs)(rL[x]),和回溯时的(dfs)(rR[x])

    void rdfs(int x) { 
        P[rL[x] = ++cnt] = x; 
        if (t[x].ch[1]) rdfs(t[x].ch[1]); 
        if (t[x].ch[0]) rdfs(t[x].ch[0]); 
        P[rR[x] = ++cnt] = x; 
    }
    

    再记录一次统计出数组(P)的两个哈希值,一个是记录点权((hs1[1][x])),

    另一个是记录当前点是左儿子还是右儿子((hs2[1][x]))(这时候要取异或一下)

        for (int i = 1; i <= cnt; i++) hs1[1][i] = hs1[1][i - 1] * base + t[P[i]].v; 
        for (int i = 1; i <= cnt; i++) hs2[1][i] = hs2[1][i - 1] * base + (get(P[i]) ^ 1); 
    

    其中(get)函数:

    inline int get(int x) { return t[t[x].fa].ch[1] == x; } 
    

    然后我们要怎么判断呢?

    先判断左右儿子(ls)(rs)(size)是否相等

    然后再判断第一遍(dfs)左儿子所覆盖的欧拉序内和

    第二遍(dfs)右儿子所覆盖的欧拉序内两个哈希值相不相等即可

    if (getHash(hs1[0], L[ls], R[ls]) != getHash(hs1[1], rL[rs], rR[rs])) continue; 
    if (getHash(hs2[0], L[ls], R[ls]) != getHash(hs2[1], rL[rs], rR[rs])) continue; 
    

    然而常数过大,速度被nlogn吊打

    完整代码

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    using namespace std;
    namespace IO { 
        const int BUFSIZE = 1 << 20; 
        char ibuf[BUFSIZE], *is = ibuf, *it = ibuf; 
        inline char gc() { 
            if (is == it) it = (is = ibuf) + fread(ibuf, 1, BUFSIZE, stdin); 
            return *is++; 
        } 
    } 
    inline int gi() {
        register int data = 0, w = 1;
        register char ch = 0;
        while (ch != '-' && (ch > '9' || ch < '0')) ch = IO::gc();
        if (ch == '-') w = -1 , ch = IO::gc();
        while (ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = IO::gc();
        return w * data;
    } 
    #define MAX_N 1000005 
    struct Node { int ch[2], fa, size, v; } t[MAX_N]; 
    inline int get(int x) { return t[t[x].fa].ch[1] == x; } 
    typedef unsigned long long ull; 
    const ull base = 100007; 
    ull pw[MAX_N << 1]; 
    ull hs1[2][MAX_N << 1], hs2[2][MAX_N << 1]; 
    ull getHash(ull *hs, int l, int r) { return hs[r] - hs[l - 1] * pw[r - l + 1]; } 
    int N, L[MAX_N], R[MAX_N], rL[MAX_N], rR[MAX_N], P[MAX_N << 1], cnt; 
    void dfs(int x) { 
        P[L[x] = ++cnt] = x; 
        if (t[x].ch[0]) dfs(t[x].ch[0]); 
        if (t[x].ch[1]) dfs(t[x].ch[1]); 
        P[R[x] = ++cnt] = x; 
        t[x].size = t[t[x].ch[0]].size + t[t[x].ch[1]].size + 1; 
    } 
    void rdfs(int x) { 
        P[rL[x] = ++cnt] = x; 
        if (t[x].ch[1]) rdfs(t[x].ch[1]); 
        if (t[x].ch[0]) rdfs(t[x].ch[0]); 
        P[rR[x] = ++cnt] = x; 
    } 
    int main () { 
        N = gi(); pw[0] = 1; 
        for (int i = 1; i <= 2 * N; i++) pw[i] = pw[i - 1] * base; 
        for (int i = 1; i <= N; i++) t[i].v = gi(); 
        for (int x = 1; x <= N; x++) { 
            int ls = gi(), rs = gi(); 
            if (ls != -1) t[x].ch[0] = ls, t[ls].fa = x; 
            if (rs != -1) t[x].ch[1] = rs, t[rs].fa = x; 
        } 
        dfs(1); 
        for (int i = 1; i <= cnt; i++) hs1[0][i] = hs1[0][i - 1] * base + t[P[i]].v; 
        for (int i = 1; i <= cnt; i++) hs2[0][i] = hs2[0][i - 1] * base + get(P[i]); 
        cnt = 0; rdfs(1); 
        for (int i = 1; i <= cnt; i++) hs1[1][i] = hs1[1][i - 1] * base + t[P[i]].v; 
        for (int i = 1; i <= cnt; i++) hs2[1][i] = hs2[1][i - 1] * base + (get(P[i]) ^ 1); 
        int ans = 1; 
        for (int x = 1; x <= N; x++) { 
            int ls = t[x].ch[0], rs = t[x].ch[1]; 
            if (t[ls].size != t[rs].size) continue; 
            if (getHash(hs1[0], L[ls], R[ls]) != getHash(hs1[1], rL[rs], rR[rs])) continue; 
            if (getHash(hs2[0], L[ls], R[ls]) != getHash(hs2[1], rL[rs], rR[rs])) continue; 
            ans = max(ans, t[x].size); 
        } 
        printf("%d
    ", ans); 
        return 0; 
    } 
    
  • 相关阅读:
    TreeMap Red-Black tree
    Java实现生产者消费者问题与读者写者问题
    一个对象占用多大内存
    MySQL索引背后的数据结构及算法原理
    Java并发编程与技术内幕:线程池深入理解
    Java Spring 中你不知道的注入方式
    面试中的排序算法总结
    JAVA反射
    StringBuilder与StringBuffer的区别
    Java多线程总结【转】
  • 原文地址:https://www.cnblogs.com/heyujun/p/9991305.html
Copyright © 2011-2022 走看看