10976 Fractions Again
It is easy to see that for every fraction in the form 1 k (k > 0), we can always find two positive integers x and y, x ≥ y, such that: 1 k = 1 x + 1 y Now our question is: can you write a program that counts how many such pairs of x and y there are for any given k? Input Input contains no more than 100 lines, each giving a value of k (0 < k ≤ 10000). Output For each k, output the number of corresponding (x, y) pairs, followed by a sorted list of the values of x and y, as shown in the sample output.
Sample Input
2
12
Sample Output
2
1/2 = 1/6 + 1/3
1/2 = 1/4 + 1/4
8
1/12 = 1/156 + 1/13
1/12 = 1/84 + 1/14
1/12 = 1/60 + 1/15
1/12 = 1/48 + 1/16
1/12 = 1/36 + 1/18
1/12 = 1/30 + 1/20
1/12 = 1/28 + 1/21
1/12 = 1/24 + 1/24
#include <iostream> #include <cstdio> using namespace std; int xx[1005],yy[1005]; int main() { int k,x,y,total; while(cin >> k && k!=0) { total = 0; for(int i=k+1; i<=2*k; i++) { if(k*i%(i-k)==0) { xx[total] = k*i/(i-k); yy[total] = i; total++; } } cout<<total<<endl; for(int i=0; i<total; i++) { printf("1/%d = 1/%d + 1/%d ",k,xx[i],yy[i]); } } return 0; }