zoukankan      html  css  js  c++  java
  • The Number of Inversions

    For a given sequence A={a0,a1,...an1}A={a0,a1,...an−1}, the number of pairs (i,j)(i,j) where ai>ajai>aj and i<ji<j, is called the number of inversions. The number of inversions is equal to the number of swaps of Bubble Sort defined in the following program:

    bubbleSort(A)
      cnt = 0 // the number of inversions
      for i = 0 to A.length-1
        for j = A.length-1 downto i+1
          if A[j] < A[j-1]
    	swap(A[j], A[j-1])
    	cnt++
    
      return cnt
    

    For the given sequence AA, print the number of inversions of AA. Note that you should not use the above program, which brings Time Limit Exceeded.

    Input

    In the first line, an integer nn, the number of elements in AA, is given. In the second line, the elements aiai (i=0,1,..n1i=0,1,..n−1) are given separated by space characters.

    output

    Print the number of inversions in a line.

    Constraints

    • 1n200,0001≤n≤200,000
    • 0ai1090≤ai≤109
    • aiai are all different

    Sample Input 1

    5
    3 5 2 1 4
    

    Sample Output 1

    6
    

    Sample Input 2

    3
    3 1 2
    

    Sample Output 2

    2
    题意就是求一组数的逆序数,大小等于冒泡排序交换的次数,但看数据范围,这题用冒泡肯定超时。所以用归并排序模拟冒泡即可。
    #include<iostream>
    #include<cstring>
    #include<stack>
    #include<cstdio>
    #include<cmath>
    using namespace std;
    #define MAX 500000
    #define INF 2e9
    int L[MAX/2+2],R[MAX/2+2];
    long long  cnt=0;
    long long merge(int A[],int n,int left,int mid,int right)
    {
        long long cnt=0;
        int n1=mid-left;
        int n2=right-mid;
        for(int i=0;i<n1;i++)
        {
            L[i]=A[left+i];
        }
        for(int i=0;i<n2;i++)
        {
            R[i]=A[mid+i];
        }
        L[n1]=INF;
        R[n2]=INF;
        int i=0,j=0;
        for(int k=left;k<right;k++)//合并
        {
         if(L[i]<=R[j])
         A[k]=L[i++];
         else
         {
         A[k]=R[j++];
         cnt=cnt+(n1-i);
    }
    }
    return cnt;
    }
    long long  mergeSort(int A[],int n,int left,int right)
    {
        long long v1,v2,v3;
        if(left+1<right)
        {
            int mid=(left+right)/2;
            v1=mergeSort(A,n,left,mid);
            v2=mergeSort(A,n,mid,right);
            v3=merge(A,n,left,mid,right); 
            return (v1+v2+v3); 
        }
        else
        return 0;
    }
    int main()
    {
    int A[MAX],n;
    cnt=0;
    cin>>n;
    for(int i=0;i<n;i++)
    cin>>A[i];
    cnt=mergeSort(A,n,0,n);
    cout<<cnt<<endl;
    return 0;
     }
  • 相关阅读:
    Spring IOC 和 AOP
    Java 类加载机制
    面向对象程序设计思想简述
    Linux 卸载 MySQL 数据库
    Linux 安装 mysql 数据库
    Linux 配置 JDK
    Linux 指令
    去除字符串里面的某些字符替换成另一个字符
    jsp有哪些内置对象?作用分别是什么? 分别有什么方法?
    jsp有哪些动作?作用分别是什么?
  • 原文地址:https://www.cnblogs.com/hh13579/p/10833392.html
Copyright © 2011-2022 走看看