zoukankan      html  css  js  c++  java
  • Codeforces Round #422 (Div. 2)A. I'm bored with life

    A. I'm bored with life
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Holidays have finished. Thanks to the help of the hacker Leha, Noora managed to enter the university of her dreams which is located in a town Pavlopolis. It's well known that universities provide students with dormitory for the period of university studies. Consequently Noora had to leave Vičkopolis and move to Pavlopolis. Thus Leha was left completely alone in a quiet town Vičkopolis. He almost even fell into a depression from boredom!

    Leha came up with a task for himself to relax a little. He chooses two integers A and B and then calculates the greatest common divisor of integers "A factorial" and "B factorial". Formally the hacker wants to find out GCD(A!, B!). It's well known that the factorial of an integer xis a product of all positive integers less than or equal to x. Thus x! = 1·2·3·...·(x - 1)·x. For example 4! = 1·2·3·4 = 24. Recall that GCD(x, y) is the largest positive integer q that divides (without a remainder) both x and y.

    Leha has learned how to solve this task very effective. You are able to cope with it not worse, aren't you?

    Input

    The first and single line contains two integers A and B (1 ≤ A, B ≤ 109, min(A, B) ≤ 12).

    Output

    Print a single integer denoting the greatest common divisor of integers A! and B!.

    Example
    input
    4 3
    output
    6
    Note

    Consider the sample.

    4! = 1·2·3·4 = 24. 3! = 1·2·3 = 6. The greatest common divisor of integers 24 and 6 is exactly 6.

    题意:问A!,B!的最大公约数

    思路:就是min(A!,b!);

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 typedef long long ll;
     4 int main(){
     5     ll a,b;
     6     cin>>a>>b;
     7     ll sum=1;
     8     for(ll i=2;i<=min(a,b);i++)
     9          sum*=i;
    10     cout<<sum<<endl;
    11 }
  • 相关阅读:
    <数据挖掘导论>读书笔记8FP树
    <数据挖掘导论>读书笔记7 Apriori算法
    c#:Json字符串转成xml对象
    微信公众平台开发
    一维随机变量及其概率分布
    概率的基本概念
    C#调用OCR组件识别图片文字
    增加系统右键菜单
    visual studio内置“iis”组件提取及二次开发
    《JavaScript权威指南》读书笔记——JavaScript核心
  • 原文地址:https://www.cnblogs.com/hhxj/p/7110532.html
Copyright © 2011-2022 走看看