题目要求
有两个容器,容积分别为A升和B升,有无限多的水,现在需要C升水。
我们还有一个足够大的水缸,足够容纳C升水。起初它是空的,我们只能往水缸里倒入水,而不能倒出。
可以进行的操作是:
把一个容器灌满;
把一个容器清空(容器里剩余的水全部倒掉,或者倒入水缸);
用一个容器的水倒入另外一个容器,直到倒出水的容器空或者倒入水的容器满。
问是否能够通过有限次操作,使得水缸最后恰好有C升水。
输入:三个整数A, B, C,其中 0 < A , B, C <= 1000000000
输出:0或1,表示能否达到要求。
函数头部:
c语言:1表示可以,0表示不可以
int can(int a,int b,int c);
c++语言: true表示可以,false表示不可以
bool can(int a,int b,int c);
java语言:true表示可以,false表示不可以
public class Main {
public static boolean can(int a,int b,int c);
}
解题思路
这是一个典型的倒水问题/量水问题,使用欧几里得算法就可解出来。
这里有一篇文章给出了简单的倒水问题的解法,可以解决笔试面试里面一些简单的填空题,可以看一看:http://blog.csdn.net/morewindows/article/details/7481851
基本思想是:不断用小桶装水倒入大桶,大桶满了立即清空,每次判断下二个桶中水的容量是否等于指定容量。也就是用小桶容量的倍数对大桶的容量进行取余,直到余数等于指定容量。
例如,用7升的桶和11升的桶得到2升水可以这样做:
7 % 11 = 7
14 % 11 = 3
21 % 11 = 10
28 % 11 = 6
35 % 11 = 2 成功得到2升水。
7 % 11 = 7
14 % 11 = 3
21 % 11 = 10
28 % 11 = 6
35 % 11 = 2 成功得到2升水。
对于明确说明可以得到xx升水,需要我们给出如何倒出来的步骤,可以用这个方法,很快捷。但是这个方法不适合解这道题。
欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。
用gcd(a,b) 表示a, b的最大公约数,则有定理:gcd(a,b) = gcd(b,a mod b) (a>b 且a mod b 不为0)
具体的算法实现有循环和递归两种,我用的是循环的方法。
扩展欧几里得算法
定理:对于不完全为 0 的非负整数 a,b,gcd(a, b)表示 a, b 的最大公约数,必然存在整数对 x, y ,使得 gcd(a,b)=ax+by。
定理:对于不完全为 0 的非负整数 a,b,gcd(a, b)表示 a, b 的最大公约数,必然存在整数对 x, y ,使得 gcd(a,b)=ax+by。
本题实际上是问是否存在整数x, y,使得ax+by=c成立。如果c可以被gcd(a,b)整除,则成立。
因此解题步骤如下:
1. 求出gcd(a,b)
2. 判断c是否能被gcd(a,b)整除,若能则返回true,否则返回false
2. 判断c是否能被gcd(a,b)整除,若能则返回true,否则返回false
Java代码
1 public static boolean can(int a,int b,int c) { 2 int r; 3 while (true) { 4 r = a % b; 5 if (r != 0) { 6 a = b; 7 b = r; 8 } else { 9 break; 10 } 11 } 12 return c%b == 0; //b现在是最大公约数,若c能被b整除,则可以 13 }