题解(公式推导)
[egin{aligned}
sum_{i=1}^{n}sum_{j=1}^{m}operatorname{lcm}(i,j)
&=sum_{i=1}^{n}sum_{j=1}^{m}frac{ij}{gcd(i,j)}\
&=sum_{i=1}^{n}sum_{j=1}^{m}sum_{g=1}^{min(i,j)}[gcd(i,j)=g]frac{ij}{g}\
&=sum_{i=1}^{n}sum_{j=1}^{m}sum_{g=1}^{min(i,j)}[gcd(i,j)=g]frac{i}{g}frac{j}{g}g\
&=sum_{g=1}^{min(n,m)}gsum_{i=1}^{n}sum_{j=1}^{m}[gcd(i,j)=g]frac{i}{g}frac{j}{g}\
&=sum_{g=1}^{min(n,m)}gsum_{i=1}^{lfloorfrac{n}{g}
floor}sum_{j=1}^{lfloorfrac{m}{g}
floor}[gcd(i,j)=1]ij\
&=sum_{g=1}^{min(n,m)}gsum_{i=1}^{lfloorfrac{n}{g}
floor}isum_{j=1}^{lfloorfrac{m}{g}
floor}j[gcd(i,j)=1]\
&=sum_{g=1}^{min(n,m)}gsum_{i=1}^{lfloorfrac{n}{g}
floor}isum_{j=1}^{lfloorfrac{m}{g}
floor}jsum_{g|i}sum_{g|j}mu(g)\
end{aligned}
]
设 (mathbf{F}(n,m)=sumlimits_{i=1}^{n}isumlimits_{j=1}^{m}jsumlimits_{g|i}sumlimits_{g|j}mu(g)),则原式 (=sumlimits_{g=1}^{min(n,m)}gmathbf{F}(frac{n}{g},frac{m}{g}))
考虑化简 (mathbf{F}(n,m)):
[egin{aligned}
mathbf{F}(n,m)
&=sum_{i=1}^{n}isum_{j=1}^{m}jsum_{g=1}^{min(n, m)}sum_{g|i}sum_{g|j}mu(g)\
&=sum_{g=1}^{min(n, m)}mu(g)sum_{i=1}^{n}isum_{j=1}^{m}j[g|i][g|j]\
&=sum_{g=1}^{min(n, m)}mu(g)sum_{i=1}^{lfloorfrac{n}{g}
floor}idsum_{j=1}^{lfloorfrac{m}{g}
floor}jd\
&=sum_{g=1}^{min(n, m)}mu(g)g^2sum_{i=1}^{lfloorfrac{n}{g}
floor}isum_{j=1}^{lfloorfrac{m}{g}
floor}j\
end{aligned}
]
记 (mathbf{S}(l, r)=frac{(l+r)(r-l+1)}{2}) (等差数列求和公式)
那么
[egin{aligned}
mathbf{F}(n,m)
&=sum_{g=1}^{min(n, m)}mu(g)g^2mathbf{S}(1,lfloorfrac{n}{g}
floor)mathbf{S}(1,lfloorfrac{m}{g}
floor)\
end{aligned}
]
至此,(mathbf{F}(n,m)) 已经可以用数论分块在 (Theta(sqrt{min(n, m)})) 的时间内求出。
而对原式 (sumlimits_{g=1}^{min(n,m)}gmathbf{F}(frac{n}{g},frac{m}{g})) 也可用用一次数论分块((Theta(sqrt{min(n, m)})))
这样的总时间复杂度是 (Theta(min(n,m))=Theta(n)) 的(认为 (n,m) 同阶)
代码
const int N = 1e7 + 7, P = 20101009, inv6 = 16750841;
bool IsntPrime[N];
int primes[N], pcnt;
int mu[N];
int64 sum[N];
void init(int maxx) {
sum[1] = mu[1] = 1;
for (int i = 2; i <= maxx; ++i) {
if (!IsntPrime[i]) primes[++pcnt] = i, mu[i] = -1;
for (int p = 1; p <= pcnt && i * primes[p] <= maxx; ++p) {
IsntPrime[i * primes[p]] = true;
if (i % primes[p] == 0) break;
mu[i * primes[p]] = -mu[i];
}
sum[i] = (sum[i - 1] + (int64)i * i * mu[i]) % P;
}
}
inline int64 sum_i1(int64 n) { return (n * (n + 1) >> 1) % P; }
#define query_sum(l, r) (sum[r] - sum[(l) - 1])
inline int64 solve(int n, int m) {
int64 ans = 0;
for (int l = 1, r; l <= min(n, m); l = r + 1) {
r = min(n / (n / l), m / (m / l));
ans += query_sum(l, r) * sum_i1(n / l) % P * sum_i1(m / l) % P;
}
return ans % P;
}
signed main() {
int n, m;
read >> n >> m;
init(min(n, m));
int64 ans = 0;
for (int l = 1, r; l <= min(n, m); l = r + 1) {
r = min(n / (n / l), m / (m / l));
ans += ((int64)(l + r) * (r - l + 1) >> 1) * solve(n / l, m / l) % P;
}
write << (ans % P + P) % P << '
';
return 0;
}