zoukankan      html  css  js  c++  java
  • HDU 3307 Description has only two Sentences

    Description has only two Sentences

    Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 886    Accepted Submission(s): 265


    Problem Description
    an = X*an-1 + Y and Y mod (X-1) = 0.
    Your task is to calculate the smallest positive integer k that ak mod a0 = 0.
     
    Input
    Each line will contain only three integers X, Y, a0 ( 1 < X < 231, 0 <= Y < 263, 0 < a0 < 231).
     
    Output
    For each case, output the answer in one line, if there is no such k, output "Impossible!".
     
    Sample Input
    2 0 9
     
    Sample Output
    1
     
    Author
    WhereIsHeroFrom
     
    Source

    题目要求求一个  Ai =  XAi + Y and Y %(x-1) == 0 的  Ak % A0 == 0 的最小 k

    然后开始推公式

    可得   A n  = X^n *  A0  + (  x^(n-1) + x *(n-2) + ...... + x + 1 ) * Y

    显然  X^n * A0 必然整除 A0 可以忽略  , 然后  后项是一个等比数列 。

    然后处理一下得到想要求的就是   ( X ^ k -1 )/ ( x - 1 ) * Y    %  A0  ==  0 的最小k

    转换一下    。。   设系数为  e  ,

    就是    e * A0  = ( X^k - 1 ) / (X - 1 )  * Y ;

              e * ( A0 / gcd(A0 , Y / (X - 1 ) ) ) =  X^k - 1 。 

              设  m  = ( A0 / gcd(A0 , Y / (X - 1 ) ) )  . 

              得到   X^k == 1 ( mod m )

    对m求一次单个欧拉 , 然后判一下 。 

    impossible 那里要特判一下X与m是否互质  ,若不互质,则X^k%m必定是gcd(m,X)的倍数  

    #include <algorithm>
    #include <cstring>
    #include <cstdio>
    #include <queue>
    #include <iostream>
    #include <vector>
    #include <string>
    #include <map>
    using namespace std;
    
    typedef long long ll;
    
    const int N = 100010;
    
    ll mod , tot ;
    
    ll gcd ( ll a , ll b ) { return b == 0 ? a : gcd( b ,a % b ); }
    
    ll eular ( ll n )
    {
        ll sum = n ;
        for( ll i = 2 ; i* i <= n ; ++i ){
            if(  n % i == 0 ){
                sum = sum / i *( i -1 );
                while( n % i == 0 ) n /= i ;
            }
        }
        if( n > 1 ) sum = sum / n * ( n -1 ) ;
        return sum;
    }
    
    ll quick_mod( ll a , ll b )
    {
        ll res = 1 ;
        while( b ){
            if( b & 1 ) res =  res * a % mod ;
            a = a * a % mod;
            b >>= 1 ;
        }
        return res ;
    }
    ll e[N] ;
    void get_factor( ll n )
    {
        for( ll i = 2 ; i * i <= n ; ++i ){
            if( n % i == 0 ){
                e[tot++] = i ;
                if( n / i != i ) e[tot++ ] = n / i ;
            }
        }
    }
    
    int  main()
    {
        ios::sync_with_stdio(0);
        #ifdef LOCAL
            freopen("in.txt","r",stdin);
        #endif
        ll a0 , x , y ;
        while( cin >> x >> y >> a0 ){
            tot = 0 ;
            if( !y ) { cout << '1' <<endl ; continue ;}
            ll m = a0 / gcd( y / ( x - 1 )  ,a0 ) ;
            if( gcd(m ,x) != 1 ) { cout << "Impossible!" << endl ; continue ; }
            ll phi = eular(m) ;
            get_factor(phi) ;
            sort(e , e + tot ) ;
            mod = m ;
            for( int i = 0 ; i < tot ; ++i ){
                if( quick_mod( x,e[i]) == 1 ){ cout <<e[i] << endl ; break ; }
            }
        }
    }
    only strive for your goal , can you make your dream come true ?
  • 相关阅读:
    python基础5之装饰器
    python基础4之递归、lambda、深浅copy
    python基础3之文件操作、字符编码解码、函数介绍
    python基础1之python介绍、安装、变量和字符编码、数据类型、输入输出、数据运算、循环
    python基础2之字符串、列表、字典、集合
    Mysql主从复制的实现
    LNMP一键安装脚本
    LNMP搭建(CentOS 6.3+Nginx 1.2.0+PHP 5.3.15(fpm)+ MySQL 5.5.35)
    整合apache+tomcat+keepalived实现高可用tomcat集群
    浅谈CSRF
  • 原文地址:https://www.cnblogs.com/hlmark/p/4004331.html
Copyright © 2011-2022 走看看