zoukankan      html  css  js  c++  java
  • HDU 3715 Go Deeper

    Go Deeper

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2198    Accepted Submission(s): 722


    Problem Description
    Here is a procedure's pseudocode:

    go(int dep, int n, int m)
    begin
    output the value of dep.
    if dep < m and x[a[dep]] + x[b[dep]] != c[dep] then go(dep + 1, n, m)
    end

    In this code n is an integer. a, b, c and x are 4 arrays of integers. The index of array always starts from 0. Array a and b consist of non-negative integers smaller than n. Array x consists of only 0 and 1. Array c consists of only 0, 1 and 2. The lengths of array a, b and c are m while the length of array x is n. Given the elements of array a, b, and c, when we call the procedure go(0, n, m) what is the maximal possible value the procedure may output?
     
    Input
    There are multiple test cases. The first line of input is an integer T (0 < T ≤ 100), indicating the number of test cases. Then T test cases follow. Each case starts with a line of 2 integers n and m (0 < n ≤ 200, 0 < m ≤ 10000). Then m lines of 3 integers follow. The i-th(1 ≤ i ≤ m) line of them are ai-1 ,bi-1 and ci-1 (0 ≤ ai-1, bi-1 < n, 0 ≤ ci-1 ≤ 2).
     
    Output
    For each test case, output the result in a single line.
     
    Sample Input
    3
     
    2 1
    0 1 0
     
    2 1
    0 0 0
     
    2 2
    0 1 0
    1 1 2
     
    Sample Output
    1 1 2
     
    Author
    CAO, Peng
     
    Source
     

    题目的意思是求出符合条件的能去到的最大深度 。

    然后 x 只有 0 , 1 两种 。

    明显就是一个   two - sat .

    然后二分一个深度 , 重新构图 , 看下所有限制能否都符合 。

    卡了一下二分 。 。 

    构图我是反向的 , 即 u - v 表示这两个条件不能共存 

    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <map>
    
    using namespace std;
    typedef long long LL;
    const int N = 20010;
    const int M = 800010;
    
    int eh[N] , et[M], nxt[M] , tot ;
    bool mark[N] ;
    int n ,  s  , a[N] , b[N] ,c[N];
    int st[N] , top  ;
    
    void addedge(int u , int v )
    {
        et[tot] = v , nxt[tot] = eh[u] , eh[u] = tot++;
        et[tot] = u , nxt[tot] = eh[v] , eh[v] = tot++;
    }
    void init()
    {
        memset (mark , false , sizeof mark );
        tot = 0 ;
        memset ( eh  , -1 , sizeof eh );
    }
    // ----------------
    
    bool dfs( int u )
    {
        if( mark[u] ) return true ;
        if( mark[u^1] ) return false ;
        mark[u] = true;
        st[top++] = u ;
        for( int i = eh[u] ; ~i ; i = nxt[i] ){
            int v = et[i] ;
            if( !dfs( v^1 ) ) return false;
        }
        return true ;
    }
    
    bool solve( int m )
    {
        init();
        for( int i = 0 ; i < m ; ++i ){
           if( c[i] == 0 ){
                addedge( 2*a[i] , 2*b[i] );
            }
            else if( c[i] == 1 ){
                addedge( (2*a[i])^1 , 2*b[i] );
                addedge( (2*b[i])^1 , 2*a[i] );
            }
            else {
                addedge( (2*a[i])^1 , (2*b[i])^1 );
            }
        }
        for( int i = 0 ; i < 2 * n ; i+=2 ){
            if( !mark[i] && !mark[i+1] ){
                top = 0 ;
                if( !dfs(i) ){
                    while( top > 0 ) mark[ st[--top] ] = false ;
                    if( !dfs(i+1) ) return false ;
                }
            }
        }
        return true;
    }
    void run()
    {
        int  m ;
        scanf("%d%d",&n,&m);
        for( int i = 0 ; i < m ;++i ) scanf("%d%d%d",&a[i],&b[i],&c[i]);
        int  ans = 1 , l = 1 ,r = m ;
    
        while( l <= r ){
            int mid = ( l + r ) / 2;
    //        cout << mid <<' '<<endl ;
            if( solve(mid) )
                l = mid + 1 , ans = mid ;
            else
                r = mid - 1;
    
        }
        printf("%d
    ",ans);
    }
    
    
    int main()
    {
        #ifdef LOCAL
            freopen("in","r",stdin);
        #endif
        int _ ;
        scanf("%d",&_);
        while( _ -- )run();
        return 0;
    }
    only strive for your goal , can you make your dream come true ?
  • 相关阅读:
    【Java】XML文件的解析
    PE知识复习之PE合并节
    PE知识复习之PE的重定位表
    PE知识复习之PE的两种状态
    PE知识复习之PE的节表
    PE知识复习之PE的各种头属性解析
    PE知识复习之PE的导入表
    PE知识复习之PE的导出表
    PE知识复习之PE的绑定导入表
    第三讲扩展,VA,RVA,FA(RAW),模块地址的概念
  • 原文地址:https://www.cnblogs.com/hlmark/p/4020360.html
Copyright © 2011-2022 走看看