zoukankan      html  css  js  c++  java
  • HDU 3715 Go Deeper

    Go Deeper

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2198    Accepted Submission(s): 722


    Problem Description
    Here is a procedure's pseudocode:

    go(int dep, int n, int m)
    begin
    output the value of dep.
    if dep < m and x[a[dep]] + x[b[dep]] != c[dep] then go(dep + 1, n, m)
    end

    In this code n is an integer. a, b, c and x are 4 arrays of integers. The index of array always starts from 0. Array a and b consist of non-negative integers smaller than n. Array x consists of only 0 and 1. Array c consists of only 0, 1 and 2. The lengths of array a, b and c are m while the length of array x is n. Given the elements of array a, b, and c, when we call the procedure go(0, n, m) what is the maximal possible value the procedure may output?
     
    Input
    There are multiple test cases. The first line of input is an integer T (0 < T ≤ 100), indicating the number of test cases. Then T test cases follow. Each case starts with a line of 2 integers n and m (0 < n ≤ 200, 0 < m ≤ 10000). Then m lines of 3 integers follow. The i-th(1 ≤ i ≤ m) line of them are ai-1 ,bi-1 and ci-1 (0 ≤ ai-1, bi-1 < n, 0 ≤ ci-1 ≤ 2).
     
    Output
    For each test case, output the result in a single line.
     
    Sample Input
    3
     
    2 1
    0 1 0
     
    2 1
    0 0 0
     
    2 2
    0 1 0
    1 1 2
     
    Sample Output
    1 1 2
     
    Author
    CAO, Peng
     
    Source
     

    题目的意思是求出符合条件的能去到的最大深度 。

    然后 x 只有 0 , 1 两种 。

    明显就是一个   two - sat .

    然后二分一个深度 , 重新构图 , 看下所有限制能否都符合 。

    卡了一下二分 。 。 

    构图我是反向的 , 即 u - v 表示这两个条件不能共存 

    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <map>
    
    using namespace std;
    typedef long long LL;
    const int N = 20010;
    const int M = 800010;
    
    int eh[N] , et[M], nxt[M] , tot ;
    bool mark[N] ;
    int n ,  s  , a[N] , b[N] ,c[N];
    int st[N] , top  ;
    
    void addedge(int u , int v )
    {
        et[tot] = v , nxt[tot] = eh[u] , eh[u] = tot++;
        et[tot] = u , nxt[tot] = eh[v] , eh[v] = tot++;
    }
    void init()
    {
        memset (mark , false , sizeof mark );
        tot = 0 ;
        memset ( eh  , -1 , sizeof eh );
    }
    // ----------------
    
    bool dfs( int u )
    {
        if( mark[u] ) return true ;
        if( mark[u^1] ) return false ;
        mark[u] = true;
        st[top++] = u ;
        for( int i = eh[u] ; ~i ; i = nxt[i] ){
            int v = et[i] ;
            if( !dfs( v^1 ) ) return false;
        }
        return true ;
    }
    
    bool solve( int m )
    {
        init();
        for( int i = 0 ; i < m ; ++i ){
           if( c[i] == 0 ){
                addedge( 2*a[i] , 2*b[i] );
            }
            else if( c[i] == 1 ){
                addedge( (2*a[i])^1 , 2*b[i] );
                addedge( (2*b[i])^1 , 2*a[i] );
            }
            else {
                addedge( (2*a[i])^1 , (2*b[i])^1 );
            }
        }
        for( int i = 0 ; i < 2 * n ; i+=2 ){
            if( !mark[i] && !mark[i+1] ){
                top = 0 ;
                if( !dfs(i) ){
                    while( top > 0 ) mark[ st[--top] ] = false ;
                    if( !dfs(i+1) ) return false ;
                }
            }
        }
        return true;
    }
    void run()
    {
        int  m ;
        scanf("%d%d",&n,&m);
        for( int i = 0 ; i < m ;++i ) scanf("%d%d%d",&a[i],&b[i],&c[i]);
        int  ans = 1 , l = 1 ,r = m ;
    
        while( l <= r ){
            int mid = ( l + r ) / 2;
    //        cout << mid <<' '<<endl ;
            if( solve(mid) )
                l = mid + 1 , ans = mid ;
            else
                r = mid - 1;
    
        }
        printf("%d
    ",ans);
    }
    
    
    int main()
    {
        #ifdef LOCAL
            freopen("in","r",stdin);
        #endif
        int _ ;
        scanf("%d",&_);
        while( _ -- )run();
        return 0;
    }
    only strive for your goal , can you make your dream come true ?
  • 相关阅读:
    C#过滤重复数据,使用泛型
    office2007:您正试图运行的函数包含有宏或需要宏语言支持的内容。而在安装此软件时,您(或您的管理员)选择了不安装宏或控件的支持功能
    InstallShield高级应用获取本机所有的SQL服务
    结对项目
    ActiveMQ 初学1:ActiveMQ 创建连接对象
    【JVM】jstack和dump线程分析(2)
    【JVM】jstack 查询占用最大资源线程|排查死循环等
    【java多线程】volatile 关键字
    1.zookeeper原理解析数据存储之Zookeeper内存结构
    【数据算法】Java实现二叉树存储以及遍历
  • 原文地址:https://www.cnblogs.com/hlmark/p/4020360.html
Copyright © 2011-2022 走看看