zoukankan      html  css  js  c++  java
  • POJ-1458 Common Subsequence ( DP )

    题目链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=68966#problem/L

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    题目大意 找两个串的最大公共子串
    状态转移方程 以dp[i][j]表示串1前i个字符和串2前j个字符的最大公共子串,则当str1[i]==dp[j]时有dp[i][j] = dp[i - 1][j - 1] + 1,否则dp[i][j] = max( dp[i - 1][j], dp[i][j - 1] ),此结论可用反正证明

     1 #include<iostream>
     2 #include<cstring>
     3 #include<cmath>
     4 #include<algorithm>
     5 using namespace std;
     6 
     7 int dp[1005][1005];
     8 
     9 int main(){
    10     ios::sync_with_stdio( false );
    11 
    12     string str1, str2;
    13     while( cin >> str1 >> str2 ){
    14         memset( dp, 0, sizeof( dp ) );
    15 
    16         for( int i = 0; i < str1.size(); i++ )
    17             for( int j = 0; j < str2.size(); j++ ){
    18                 if( str1[i] == str2[j] )
    19                     dp[i + 1][ j + 1] = dp[i][j] + 1;
    20                 else dp[i + 1][j + 1] = max( dp[i][j + 1], dp[i + 1][j] );
    21             }
    22 
    23         cout << dp[str1.size()][str2.size()] << endl;
    24     }
    25 
    26     return 0;
    27 }
  • 相关阅读:
    Protobuf
    CPU profiling
    转 Unicode 和 UTF-8 的区别
    Redis数据结构底层知识总结
    MySQL 加锁处理分析 ---非常牛逼
    MySQL Gap Lock问题
    利用Linux文件系统内存cache来提高性能
    Xcode7安装CocoaPods
    字符串排列组合算法
    iOS项目开发实战——学会使用TableView列表控件(四)plist读取与Section显示
  • 原文地址:https://www.cnblogs.com/hollowstory/p/5448716.html
Copyright © 2011-2022 走看看