zoukankan      html  css  js  c++  java
  • codeforces 616D Longest k-Good Segment(two pointer)

    D. Longest k-Good Segment

     

    The array a with n integers is given. Let's call the sequence of one or more consecutive elements in a segment. Also let's call the segment k-good if it contains no more than k different values.

    Find any longest k-good segment.

    As the input/output can reach huge size it is recommended to use fast input/output methods: for example, prefer to use scanf/printfinstead of cin/cout in C++, prefer to use BufferedReader/PrintWriter instead of Scanner/System.out in Java.

    Input

    The first line contains two integers n, k (1 ≤ k ≤ n ≤ 5·105) — the number of elements in a and the parameter k.

    The second line contains n integers ai (0 ≤ ai ≤ 106) — the elements of the array a.

    Output

    Print two integers l, r (1 ≤ l ≤ r ≤ n) — the index of the left and the index of the right ends of some k-good longest segment. If there are several longest segments you can print any of them. The elements in a are numbered from 1 to n from left to right.

    Sample test(s)
    input
    5 5
    1 2 3 4 5
    output
    1 5
    input
    9 3
    6 5 1 2 3 2 1 4 5
    output
    3 7
    input
    3 1
    1 2 3
    output
    1 1
    //从左到右维护一个最长的不同元素个数<=k的区间
    #include<cstdio> #include<cstring> #include<stack> #include<iterator> #include<queue> #include<set> #include<vector> #include<iostream> #include<map> #include<string> #include<algorithm> using namespace std; typedef long long ll; typedef unsigned long long ull; const int INF=0x3f3f3f3f; const int maxn=5e5+5; int cnt[1000005]; int a[maxn]; int main() { int n,k; scanf("%d%d",&n,&k); for(int i=0;i<n;i++) scanf("%d",&a[i]); int p1=0,p2=-1,l=0,r=0,tot=0; while(p2<n) { while(++p2<n) { if(!cnt[a[p2]])tot++; cnt[a[p2]]++; if(tot>k)break; if(p2-p1>=r-l)r=p2,l=p1; } while(tot>k) { cnt[a[p1]]--; if(cnt[a[p1]]==0) { tot--;p1++; break; } p1++; } } printf("%d %d ",l+1,r+1); return 0; }
  • 相关阅读:
    洛谷 P2634 BZOJ 2152 【模板】点分治(聪聪可可)
    洛谷 P3819 松江1843路
    洛谷 P1005 矩阵取数游戏
    洛谷 P2712 摄像头
    洛谷 P2774 方格取数问题
    洛谷 P3369 BZOJ 3224 【模板】普通平衡树(Treap/SBT)
    洛谷 P2805 BZOJ 1565 植物大战僵尸
    洛谷 P2312 解方程
    洛谷 P3355 骑士共存问题
    洛谷 P2762 太空飞行计划问题
  • 原文地址:https://www.cnblogs.com/homura/p/5127121.html
Copyright © 2011-2022 走看看