zoukankan      html  css  js  c++  java
  • Light OJ 1094 (树的直径)

    Description

    Given a tree (a connected graph with no cycles), you have to find the farthest nodes in the tree. The edges of the tree are weighted and undirected. That means you have to find two nodes in the tree whose distance is maximum amongst all nodes.

    Input

    Input starts with an integer T (≤ 10), denoting the number of test cases.

    Each case starts with an integer n (2 ≤ n ≤ 30000) denoting the total number of nodes in the tree. The nodes are numbered from 0 to n-1. Each of the next n-1 lines will contain three integers u v w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 10000) denoting that node u and v are connected by an edge whose weight is w. You can assume that the input will form a valid tree.

    Output

    For each case, print the case number and the maximum distance.

    Sample Input

    2

    4

    0 1 20

    1 2 30

    2 3 50

    5

    0 2 20

    2 1 10

    0 3 29

    0 4 50

    Sample Output

    Case 1: 100

    Case 2: 80

     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 #include<queue>
     5 #include<vector>
     6 #include<algorithm>
     7 using namespace std;
     8 const int maxn=3e4+5;
     9 struct Edge
    10 {
    11     int v,w;
    12 };
    13 struct node
    14 {
    15     int u,tot;
    16 };
    17 bool vis[maxn];
    18 int ans,ed;
    19 vector<Edge>G[maxn];
    20 void bfs(int u)
    21 {
    22     vis[u]=1;
    23     queue<node>q;
    24     node t1,t2;
    25     t1.u=u,t1.tot=0;
    26     q.push(t1);
    27     while(!q.empty())
    28     {
    29         t1=q.front();q.pop();
    30         if(ans<t1.tot)ans=t1.tot,ed=t1.u;
    31         int len=G[t1.u].size();
    32         for(int i=0;i<len;i++)
    33         {
    34             int v=G[t1.u][i].v;
    35             if(vis[v])continue;
    36             t2.u=v,t2.tot=G[t1.u][i].w+t1.tot;
    37             q.push(t2);
    38             vis[v]=1;
    39         }
    40     }
    41 }
    42 int main()
    43 {
    44     int T;
    45     scanf("%d",&T);
    46     for(int kase=1;kase<=T;kase++)
    47     {
    48         int n;
    49         ans=0;
    50         scanf("%d",&n);
    51         for(int i=0;i<n;i++)G[i].clear();
    52         for(int i=0;i<n-1;i++)
    53         {
    54             int u,v,w;
    55             scanf("%d%d%d",&u,&v,&w);
    56             G[u].push_back((Edge){v,w});
    57             G[v].push_back((Edge){u,w});
    58         }
    59         memset(vis,0,sizeof(vis));
    60         bfs(0);
    61         memset(vis,0,sizeof(vis));
    62         bfs(ed);
    63         printf("Case %d: ",kase);
    64         printf("%d
    ",ans);
    65     }
    66     return 0;
    67 }
  • 相关阅读:
    第四章作业
    第二章上机实验报告
    对二分法的理解和结对编程情况
    Mysql与sql server的列的合并
    C#中如何去除窗体默认的关闭按钮
    C# 实现WinForm窗口最小化到系统托盘代码,并且判断左右鼠标的事件
    running total sql 2012+
    Poqwe Pivot error
    事务
    ssis 导EXCEL ERROR
  • 原文地址:https://www.cnblogs.com/homura/p/5421439.html
Copyright © 2011-2022 走看看