zoukankan      html  css  js  c++  java
  • HDU 5738 Eureka

    Eureka




    Problem Description
    Professor Zhang draws n points on the plane, which are conveniently labeled by 1,2,...,n. The i-th point is at (xi,yi). Professor Zhang wants to know the number of best sets. As the value could be very large, print it modulo 109+7.

    A set P (P contains the label of the points) is called best set if and only if there are at least one best pair in P. Two numbers u and v (u,vP,uv) are called best pair, if for every wPf(u,v)g(u,v,w), where f(u,v)=(xuxv)2+(yuyv)2−−−−−−−−−−−−−−−−−−√ and g(u,v,w)=f(u,v)+f(v,w)+f(w,u)2.
     
    Input
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

    The first line contains an integer n (1n1000) -- then number of points.

    Each of the following n lines contains two integers xi and yi (109xi,yi109) -- coordinates of the i-th point.
     
    Output
    For each test case, output an integer denoting the answer.
     
    Sample Input
    3
     
     
    3
    1 1
    1 1
    1 1
     
    3
    0 0
    0 1
    1 0
     
    1
    0 0
     
    Sample Output
    4
    3
    0
     
    #include<cstdio>
    #include<iostream>
    #include<map>
    #include<cmath>
    #include<algorithm>
    #define fi first
    #define se second
    using namespace std;
    typedef long long LL;
    const int MOD=1e9+7;
    struct point
    {
        LL x,y;
        bool operator == (const point &t)const
        {
            return x==t.x&&y==t.y;
        }
        bool operator < (const point &t)const
        {
            return x==t.x?y<t.y:x<t.x;
        }
    }p[1005];
    map<pair<LL,LL>,int>f;
    LL gcd(LL a,LL b)
    {
        return b==0?a:gcd(b,a%b);
    }
    pair<LL,LL> get_slope(point a,point b)
    {
        LL up=b.y-a.y;
        LL dw=b.x-a.x;
        LL t=gcd(up,dw);
        up/=t,dw/=t;
        return make_pair(up,dw);
    }
    LL quick_mod(int a,int b)
    {
        LL res=1,t=a;
        while(b)
        {
            if(b&1)res=(res*t)%MOD;
            t=(t*t)%MOD;
            b>>=1;
        }
        return res;
    }
    int main()
    {
        int T;
        scanf("%d",&T);
        while(T--)
        {
            int n;
            scanf("%d",&n);
            LL ans=0;
            for(int i=0;i<n;i++)
                scanf("%lld%lld",&p[i].x,&p[i].y);
            sort(p,p+n);
            for(int i=0;i<n;i++)
            {
                f.clear();
                int res=0;
                for(int j=i+1;j<n;j++)
                {
                    if(p[i]==p[j])res++;
                    else f[get_slope(p[i],p[j])]++;
                }
                (ans+=quick_mod(2,res)-1)%=MOD;
                for(map<pair<LL,LL>,int>::iterator iter=f.begin();iter!=f.end();iter++)
                    (ans+=quick_mod(2,res)*(quick_mod(2,iter->se)-1))%=MOD;
    
            }
            printf("%lld
    ",ans);
        }
    }
    /*
    1
    6
    -1 -1
    1 -1
    -1 1
    1 1
    0 0
    0 0
    
    25
    */
  • 相关阅读:
    企业级应用和互联网应用的区别
    软件工程项目输出
    学习软件工程学习报告以及心得体会
    第一结对项目(黄金点游戏)(仝国庆,钱同林)
    github网页链接
    第二周代码(wc项目)
    使用filter进行用户登录
    关于JSP
    关于XML
    Java EE第一课
  • 原文地址:https://www.cnblogs.com/homura/p/5696049.html
Copyright © 2011-2022 走看看