zoukankan      html  css  js  c++  java
  • python智能图片识别系统(图片切割、图片识别、区别标识)

    @

    技术介绍

    你好! python flask图片识别系统使用到的技术有:图片背景切割、图片格式转换(pdf转png)、图片模板匹配、图片区别标识。

    运行效果

    第一组:

    图片1:
    在这里插入图片描述
    图片2:
    在这里插入图片描述
    开始上传:
    在这里插入图片描述
    上传成功、图片预览:
    (emmm..抱歉图片大小未处理,有点大哈)
    在这里插入图片描述
    识别效果:
    在这里插入图片描述
    成功了。。。

    第二组:

    这会搞个复杂些的,也是实用的图片

    图片1:(图片仅供交流,侵权删)
    在这里插入图片描述
    图片2:
    在这里插入图片描述
    你会发现,其实图片2是图片1的子图,这下我们看看程序处理的效果:

    在这里插入图片描述
    还可以哈,截取了图片1中的匹配部分,然后标识出来了区别

    关键代码

    图片背景切割

    from PIL import Image
    import cv2
    import os
    from common.util import Util
    
    
    # 图片去除周围白色
    def img_cut_white(img_path, cut_img_path, tagrt_rgb_x, tagrt_rgb_y):
        # img_path = "./images/notebook.png"
        img = Image.open(img_path)
        rgb_im = img.convert('RGB')
        width, height = img.size
        # 打印图片的宽高
        print(width, height)
    
        # 把高度分为8份,后续用这8个点高度作为高度循环
        list_target_height = [height / 8, height / 4, 3 * height / 8, height / 2, 5 * height / 8, 3 * height / 4]
    
        x0,x1 = get_pointx(bypara="1",width=width,height=height,list_target_height=list_target_height,rgb_im=rgb_im,tagrt_rgb=tagrt_rgb_x)
        y0, y1 = get_pointx(bypara="2", width=width, height=height, list_target_height=list_target_height, rgb_im=rgb_im,
                            tagrt_rgb=tagrt_rgb_y)
    
        print(x0, x1)
        print(y0, y1)
    
    
        # 按照两个对角像素点切割图片
        Util().cut_img_by_point(img_path=img_path,x0=x0,x1=x1,y0=y0,y1=y1,cut_img_path=cut_img_path)
    
    
    # 获取x0,x1,y0,y1
    def get_pointx(bypara=None,width=None,height=None,list_target_height=None,rgb_im=None,tagrt_rgb=None):
        '''
        :param bypara: 1代表进行获取x0,x1的逻辑,2代表进行获取y0,y1的逻辑
        :param  图片宽度
        :param height: 图片高度
        :param list_target_height:
        :param rgb_im: 转换为“RGB”通道的图片
        :param tagrt_rgb: rgb突变范围值
        :return:
        '''
        x0 = 0
        x1 = 0
        y0 = 0
        y1 = 0
        # 多个目标高度,每个像素点的rgb之和
        multi_point_rgb_sum = 0
        # 多个目标高度像素点的所有像素点rgb总和的平均值
        list_rgb_sum_avg = []
    
        if bypara == '1':
            for i in range(width):
                for j in range(len(list_target_height)):
                    # print("i:",i)
                    # print("list_target_height[j]:",list_target_height[j])
                    r, g, b = rgb_im.getpixel((i, list_target_height[j]))
                    # 一个点的rgb和
                    point_sum = r + g + b
                    multi_point_rgb_sum += point_sum
                    # print(point_sum, multi_point_rgb_sum)
                list_rgb_sum_avg.append(multi_point_rgb_sum / 6)
                multi_point_rgb_sum = 0
    
            # 与白色背景图像的差值list
            list_white_sub = get_listwhitesub(list_rgb_sum_avg)
            list_white_sub_dup = list_white_sub.copy()
            list_white_sub.reverse()
    
            # 获得x0
            for i in range(len(list_white_sub_dup)):
                if list_white_sub_dup[i] > tagrt_rgb:
                    x0 = i
                    break
    
            # 获得x1
            for i in range(len(list_white_sub)):
                # print(list_white_sub[i])
                if list_white_sub[i] > tagrt_rgb:
                    x1 = (width - i)
                    break
    
            return x0, x1
    
    
        elif bypara == '2':
            for i in range(height):
                for j in range(width):
                    r, g, b = rgb_im.getpixel((j, i))
                    # r, g, b = rgb_im.getpixel(j, i)
                    # 一个点的rgb和
                    point_sum = r + g + b
                    multi_point_rgb_sum += point_sum
                    # print(point_sum, multi_point_rgb_sum)
                list_rgb_sum_avg.append(multi_point_rgb_sum / width)
                multi_point_rgb_sum = 0
    
            # 与白色背景图像的差值list
            list_white_sub = get_listwhitesub(list_rgb_sum_avg)
            list_white_sub_dup = list_white_sub.copy()
            list_white_sub.reverse()
    
            # 获得y0
            for i in range(len(list_white_sub_dup)):
                if list_white_sub_dup[i] > tagrt_rgb:
                    y0 = i
                    break
            # 获得y1
            for i in range(len(list_white_sub)):
                # print(list_white_sub[i])
                if list_white_sub[i] > tagrt_rgb:
                    y1 = (height - i)
                    break
    
            return y0, y1
    
    
    
    
    
    # 获得list中相邻元素的差值list
    def get_listsub(list2):
        list3 = []
        for i in range(len(list2)):
            if i <= len(list2) - 2:
                cha = list2[i + 1] - list2[i]
                list3.append(abs(cha))
        return list3
    
    
    
    # 与白色rgb的差值 list
    def get_listwhitesub(list2):
        list3 = []
        for i in range(len(list2)):
            print(abs(list2[i]-765))
            list3.append(abs(list2[i]-765))
        return list3
    
    
    
    
    
    
    if __name__=="__main__":
        # img_path = "./images/notebook.png"
        # cut_img_path = './images/notebookcut4.png'
        tagrt_rgb_x = 300
        tagrt_rgb_y = 10
        # tagrt_rgb_x = 180
        # tagrt_rgb_y = 180
        # img_path = "../images/UIyuantu.png"
        # cut_img_path = '../images/yuantucut0.png'
    
        # img_path = "../images/00.png"
        img_path = "IMG_0.jpg"
        cut_img_path = 'IMG_0_cut.jpg'
        img_cut_white(img_path, cut_img_path, tagrt_rgb_x, tagrt_rgb_y)
    

    pdf转png代码

    import fitz
    import os
    import datetime
    from common.util import Util
    from pdf2image import convert_from_path,convert_from_bytes
    
    
    def pyMuPDF_fitz(pdfPath, imagePath):
        startTime_pdf2img = datetime.datetime.now()  # 开始时间
    
        # print("imagePath=" + imagePath)
    
        # pdfDoc = fitz.open(pdfPath)
        # print(pdfPath)
        images = convert_from_path(pdfPath)
        for index, img in enumerate(images):
        # for pg in range(pdfDoc.pageCount):
            # page = pdfDoc[pg]
            rotate = int(0)
            # 每个尺寸的缩放系数为1.3,这将为我们生成分辨率提高2.6的图像。
            # 此处若是不做设置,默认图片大小为:792X612, dpi=96
            zoom_x = 1.33333333  # (1.33333333-->1056x816)   (2-->1584x1224)
            zoom_y = 1.33333333
            # zoom_x = 1  # (1.33333333-->1056x816)   (2-->1584x1224)
            # zoom_y = 1
            # mat = fitz.Matrix(zoom_x, zoom_y).preRotate(rotate)
            # pix = img.getPixmap(matrix=mat, alpha=False)
            # img.save('%s/page_%s.png' % (outputDir, index))
    
            if not os.path.exists(imagePath):  # 判断存放图片的文件夹是否存在
                os.makedirs(imagePath)  # 若图片文件夹不存在就创建
            img.save(imagePath + '/' + 'images_%s.png' % index)
            # pix.writePNG(imagePath + '/' + 'images_%s.png' % index)  # 将图片写入指定的文件夹内
    
        endTime_pdf2img = datetime.datetime.now()  # 结束时间
        # print('pdf2img时间=', (endTime_pdf2img - startTime_pdf2img).seconds)
    
    
    def single_pyMuPDF_fitz(pdfPath, imagePath):
        startTime_pdf2img = datetime.datetime.now()  # 开始时间
    
        # print("imagePath=" + imagePath)
    
        # pdfDoc = fitz.open(pdfPath)
        images = convert_from_path(pdfPath)
        for index, img in enumerate(images):
            # page = pdfDoc[pg]
            rotate = int(0)
            # 每个尺寸的缩放系数为1.3,这将为我们生成分辨率提高2.6的图像。
            # 此处若是不做设置,默认图片大小为:792X612, dpi=96
            zoom_x = 1.33333333  # (1.33333333-->1056x816)   (2-->1584x1224)
            zoom_y = 1.33333333
            # zoom_x = 1  # (1.33333333-->1056x816)   (2-->1584x1224)
            # zoom_y = 1
            # mat = fitz.Matrix(zoom_x, zoom_y).preRotate(rotate)
            # pix = img.getPixmap(matrix=mat, alpha=False)
            # pix.writePNG(imagePath)  # 将图片写入指定的文件夹内
            img.save(imagePath)
    
        endTime_pdf2img = datetime.datetime.now()  # 结束时间
        # print('pdf2img时间=', (endTime_pdf2img - startTime_pdf2img).seconds)
    
    if __name__ == "__main__":
        # pdfPath = '../images/EWSC007.pdf'
        pdfPath = 'SCAN855.PDF'
        ##随机文件夹名字
        imagePath = 'SCAN855.png'
        # imagePath = '../images/image'+str(Util().random_num())+'.png'
        # imagePath = '../images/SCAN003.PDF'
        single_pyMuPDF_fitz(pdfPath, imagePath)
    
        # # 遍历文件夹下所有文件
        # work_dir = imagePath
        # for parent, dirnames, filenames in os.walk(work_dir, followlinks=True):
        #     for filename in filenames:
        #         file_path = os.path.join(parent, filename)
        #         print('文件名:%s' % filename)
        #         print('文件完整路径:%s
    ' % file_path)
    

    图片比较不同:

    # import the necessary packages
    from skimage.measure import compare_ssim
    import argparse
    import imutils
    import cv2
    
    
    def get_img_result(path1, path2, path3, path4):
    	# construct the argument parse and parse the arguments
    	# ap = argparse.ArgumentParser()
    	# ap.add_argument("-f", "--first", required=True,
    	# 				help="first input image")
    	# ap.add_argument("-s", "--second", required=True,
    	# 				help="second")
    	# args = vars(ap.parse_args())
    
    	# load the two input images
    	imageA = cv2.imread(path1)
    	imageB = cv2.imread(path2)
    
    	# convert the images to grayscale
    	grayA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY)
    	grayB = cv2.cvtColor(imageB, cv2.COLOR_BGR2GRAY)
    
    	# compute the Structural Similarity Index (SSIM) between the two
    	# images, ensuring that the difference image is returned
    	(score, diff) = compare_ssim(grayA, grayB, full=True)
    	diff = (diff * 255).astype("uint8")
    	print("SSIM: {}".format(score))
    
    	# threshold the difference image, followed by finding contours to
    	# obtain the regions of the two input images that differ
    	thresh = cv2.threshold(diff, 0, 255,
    						   cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    	cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
    							cv2.CHAIN_APPROX_SIMPLE)
    	cnts = imutils.grab_contours(cnts)
    
    	# loop over the contours
    	for c in cnts:
    		# compute the bounding box of the contour and then draw the
    		# bounding box on both input images to represent where the two
    		# images differ
    		(x, y, w, h) = cv2.boundingRect(c)
    		cv2.rectangle(imageA, (x, y), (x + w, y + h), (0, 0, 255), 2)
    		cv2.rectangle(imageB, (x, y), (x + w, y + h), (0, 0, 255), 2)
    
    	# show the output images
    	# cv2.imshow("Original", imageA)
    	cv2.imwrite(path3, imageA)
    	# cv2.imshow("Modified", imageB)
    	cv2.imwrite(path4, imageB)
    	# cv2.imshow("Diff", diff)
    	# cv2.imshow("Thresh", thresh)
    	# cv2.waitKey(0)
    
    
    if __name__=='__main__':
    	get_img_result('static/images/modified_03.png', 'static/images/original_03.png', 'static/images/test1.png', 'static/images/test2.png')
    

    flask路由部分:

    from flask import Flask, redirect, url_for, jsonify
    import base64
    from flask import request
    import os
    from flask import render_template
    from basicclass import image_diff
    import time
    from datetime import timedelta
    from werkzeug.utils import secure_filename
    from common.image_util import random_num
    from basicclass.pdfconvertpng import pyMuPDF_fitz, single_pyMuPDF_fitz
    from common.util import Util
    from basicclass.autocutpic import img_cut_white
    from basicclass.teamplatemath import match_target
    from common.globalparam import tagrt_rgb_x, tagrt_rgb_y, host_ip, port
    from basicclass.imagediff import dif_two_pic,dif_mark
    from basicclass.image_diff import get_img_result
    import os
    import shutil
    from basicclass.getbackcolor import replace_border_color,get_dominant_color, replace_color
    from basicclass.newimgcut import get_parts_similar,get_parts
    from basicclass.hashdiff import compare_image_with_hash
    
    app = Flask(__name__)
    
    bl_files = ['logo.jpg','meixin2.jpg']
    bl_dirs = []
    
    # 定义路由
    @app.route('/hello/<name1>/<name2>')
    def hello(name1, name2):
        # # 接收图片
        # upload_file = request.files['file']
        # # 获取图片名
        # file_name = upload_file.filename
        # # 文件保存目录(桌面)
        # file_path = r'images/'
        # if upload_file:
        #     # 地址拼接
        #     file_paths = os.path.join(file_path, file_name)
        #     # 保存接收的图片到桌面
        #     upload_file.save(file_paths)
        #     # 随便打开一张其他图片作为结果返回,
        #     with open(r'images/yp1.jpg', 'rb') as f:
        #         res = base64.b64encode(f.read())
        #         return res
        # with open("images/original_01.png", "rb") as f:
        #     # b64encode是编码,b64decode是解码
        #     base64_data = base64.b64encode(f.read())
        #     # base64.b64decode(base64data)
        #     print(base64_data)
    
        # with open("images/original_01.png", "rb") as f:
        #     # b64encode是编码,b64decode是解码
        #     base64_data = base64.b64encode(f.read())
        #     print(base64_data)
    
        # whj = {"name":'老王'}
        # return render_template('static/index.html',**whj)
        return 'Hello %s!' % name1 + name2
        # return "hello"
        # ls_f = redi.get(photo)
        # ls_f1 = base64.b64decode(ls_f)
        # # 将字符流写入BytesIO(主要用于读取缓存中的数据)
        # by = BytesIO(ls_f1)
        # return send_file(by, mimetype='image/png')
    
    
    @app.route('/blog/<int:postID>')
    def show_blog(postID):
        return 'Blog Number %d' % postID
    
    
    @app.route('/rev/<float:revNo>')
    def revision(revNo):
        return 'Revision Number %f' % revNo
    
    
    @app.route('/admin')
    def hello_admin():
        # name = request.args['name']
        print('1111111111111')
        # print(name)
        return '222222'
    
    
    @app.route('/guest/<guest>')
    def hello_guest(guest):
        return 'Hello %s as Guest' % guest
    
    
    @app.route('/user/<name>')
    def user(name):
        if name == 'admin':
            return redirect(url_for('hello_admin'))
        else:
            return redirect(url_for('hello_guest', guest=name))
    
    
    @app.route('/popopo/<user>')
    def hello_name(user):
        return render_template('hello.html', name=user)
    
    
    @app.route('/')
    def index():
        return render_template("index.html")
        # return render_template("recog_result.html")
    
    
    @app.route('/success/<name>')
    def success(name):
        return 'welcome %s' % name
    
    
    @app.route('/login', methods=['POST', 'GET'])
    def login():
        if request.method == 'POST':
            user = request.form['name']
            return redirect(url_for('success', name=user))
        else:
            print("111111111111")
            user = request.args.get('name') + "111111"
            return redirect(url_for('success', name=user))
    
    
    @app.route('/getimg/<filename1>/<filename2>')
    def get_img(filename1, filename2):
        path3 = 'static/images/' + str(random_num()) + '.png'
        path4 = 'static/images/test4.png' + str(random_num() + 1) + '.png'
        image_diff.get_img_result(
        'static/images/' +
        filename1,
        'static/images/' +
        filename2,
        path3,
         path4)
        time.sleep(5)
        img_path1 = path3.replace('static', '.')
        img_path2 = path4.replace('static', '.')
        # img_stream = return_img_stream(img_path)
        return render_template('img.html', upload_img1='./images/' + filename1, upload_img2='./images/' + filename2,
                               img_path1=img_path1, img_path2=img_path2)
    
    
    """
    这是一个展示Flask如何读取服务器本地图片, 并返回图片流给前端显示的例子
    """
    
    
    def return_img_stream(img_local_path):
        """
        工具函数:
        获取本地图片流
        :param img_local_path:文件单张图片的本地绝对路径
        :return: 图片流
        """
        base64_data = ''
        img_stream = ''
        with open(img_local_path, 'rb') as img_f:
            img_stream = img_f.read()
            img_stream = base64.b64encode(img_stream)
        return img_stream
    
    
    @app.route('/qingchutp/<destdir>/<yuandir>')
    def qingchu_imgs(destdir,yuandir):
        '''清楚系统图片缓存
        :return:
        '''
        rootdir = r"static/images"       # 选取删除文件夹的路径,最终结果删除img文件夹
        # rootdir = r""+ url_for('static', filename='img2')      # 选取删除文件夹的路径,最终结果删除img文件夹
        filelist = os.listdir(rootdir)  # 列出该目录下的所有文件名
        for f in filelist:
            filepath = os.path.join(rootdir, f)  # 将文件名映射成绝对路劲
            # if os.path.isfile(filepath):  # 判断该文件是否为文件或者文件夹
                # print(filepath)
                # os.remove(filepath)  # 若为文件,则直接删除
                # print(str(filepath) + " removed!")
            if os.path.isdir(filepath):
                print(filepath)
                if (destdir not in filepath) and (yuandir not in filepath):
                    shutil.rmtree(filepath, True)  # 若为文件夹,则删除该文件夹及文件夹内所有文件
                    print("dir " + str(filepath) + " removed!")
        return '清除成功'
    
    
    def qingchu_files(bl_files,bl_dirs):
        '''清楚系统图片缓存
        :return:
        '''
        rootdir = r"static/images"       # 选取删除文件夹的路径,最终结果删除img文件夹
        # rootdir = r""+ url_for('static', filename='img2')      # 选取删除文件夹的路径,最终结果删除img文件夹
        filelist = os.listdir(rootdir)  # 列出该目录下的所有文件名
        for f in filelist:
            filepath = os.path.join(rootdir, f)  # 将文件名映射成绝对路劲
            if os.path.isfile(filepath):  # 判断该文件是否为文件或者文件夹
                for i in range(len(bl_files)):
                    if bl_files[i] not in filepath:
                        filepath = filepath.replace('\','/')
                        os.remove(filepath)  # 若为文件,则直接删除
                        print(str(filepath) + " removed!")
                # print(filepath)
                # os.remove(filepath)  # 若为文件,则直接删除
                # print(str(filepath) + " removed!")
            if os.path.isdir(filepath):
                print(filepath)
                for i in range(len(bl_dirs)):
                    if bl_dirs[i] not in filepath:
                        shutil.rmtree(filepath, True)  # 若为文件夹,则删除该文件夹及文件夹内所有文件
                        print("dir " + str(filepath) + " removed!")
                # if destdir in filepath or yuandir in filepath:
        # return '清除成功'
    
    # 设置允许的文件格式
    ALLOWED_EXTENSIONS = set(['png', 'jpg', 'JPG', 'PNG', 'bmp', 'pdf'])
    
    
    def allowed_file(filename):
        return '.' in filename and filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS
    
    
    # 设置静态文件缓存过期时间
    app.send_file_max_age_default = timedelta(seconds=1)
    
    # 添加路由
    @app.route('/upload', methods=['POST', 'GET'])
    def upload():
        if request.method == 'POST':
            # 通过file标签获取文件
            f1 = request.files['file1']
            f2 = request.files['file2']
            # if not (f1 and allowed_file(f1.filename)):
            #     return jsonify({"error": 1001, "msg": "图片类型:png、PNG、jpg、JPG、bmp"})
            # if not (f2 and allowed_file(f2.filename)):
            #     return jsonify({"error": 1001, "msg": "图片类型:png、PNG、jpg、JPG、bmp"})
            # 当前文件所在路径
            basepath = os.path.dirname(__file__)
            # 一定要先创建该文件夹,不然会提示没有该路径
            # upload_path1 = os.path.join(basepath, 'static/images', secure_filename(f1.filename))
            # upload_path2 = os.path.join(basepath, 'static/images', secure_filename(f2.filename))
    
            upload_path1 = os.path.join(
        basepath,
        'static/images',
        secure_filename(
            f1.filename))
            upload_path2 = os.path.join(
        basepath,
        'static/images',
        secure_filename(
            f2.filename))
            print('filename:', f1.filename)
            print('filename:', f2.filename)
            filename1 = f1.filename
            filename2 = f2.filename
            filename3 = str(Util().random_num())+'.png'
            filename4 = str(Util().random_num()+1) + '.png'
            # 保存文件
            f1.save(upload_path1)
            f2.save(upload_path2)
            single_pyMuPDF_fitz(pdfPath='static/images/' + filename1, imagePath='static/images/' + filename3)
            single_pyMuPDF_fitz(pdfPath='static/images/' + filename2, imagePath='static/images/' + filename4)
            # 返回上传成功界面
            return render_template('upload_ok.html', filename1=filename1,filename2=filename2, filename3=filename3,filename4=filename4)
        # 重新返回上传界面
        return render_template('upload.html')
    
    
    @app.route('/pdftopng/<filename1>/<filename2>')
    def pdftopng(filename1, filename2):
        # pdf图片转为png格式
        # pdfPath1 = './../images/saomiaotu.pdf'
        # pdfpath2 = './../images/yuantu.pdf'
        pdfPath1 = 'static/images/' +filename1
        pdfpath2 = 'static/images/' +filename2
        dest_png_path = 'static/images/destpng' + 
            str(Util().random_num())  # 目标png文件夹名称
        yuantuPath = 'static/images/yuantu' + str(Util().random_num())
        # auto_cut_png_path = '../images/autocutpng'+str(self.util.random_num()+1)
        # #自动切割后的图片文件夹
        print(dest_png_path)
        print(yuantuPath)
        pyMuPDF_fitz(pdfPath1, yuantuPath)
        pyMuPDF_fitz(pdfpath2, dest_png_path)
    
        recog_images = []
        img_part = 0
        # 遍历文件夹下所有文件
        work_dir = dest_png_path
        for parent, dirnames, filenames in os.walk(work_dir, followlinks=True):
            for filename in filenames:
                file_path = os.path.join(parent, filename)
                # print('文件名:%s' % filename)
                # print('文件完整路径:%s
    ' % file_path)
    
                img_path = dest_png_path + '/' + filename
                scann_cut_img_path = dest_png_path + '/' + 'cut_' + filename
                img_cut_white(
        img_path,
        scann_cut_img_path,
        tagrt_rgb_x,
         tagrt_rgb_y)
    
                # if not os.path.exists(auto_cut_png_path):  # 判断存放图片的文件夹是否存在
                #     os.makedirs(auto_cut_png_path)  # 若图片文件夹不存在就创建
    
                # 如果图片切割完 进行模板匹配
                if os.path.exists(scann_cut_img_path):
                    target_path = yuantuPath + "/images_0.png"
                    template_path = scann_cut_img_path
                    # match_path = "static/images/result.png"
                    template_cut_img_path = dest_png_path + '/' + 'template_part_' + filename
                    # 匹配目标图片
                    x0, y0, x1, y1 = match_target(
        target_path, template_path)
    
                    # 根据返回的两个像素点切割图片
                    obj = Util()
                    obj.cut_img_by_point(
        img_path=target_path,
        x0=x0,
        x1=x1,
        y0=y0,
        y1=y1,
         cut_img_path=template_cut_img_path)
    
                    # 将模板匹配到的图片的边框红色去掉
                    # replace_border_color(template_cut_img_path)
                    #
                    # print(scann_cut_img_path,template_cut_img_path)
    
                    # 改变图片的背景颜色
                    target_rgb = get_dominant_color(scann_cut_img_path)
                    replace_path_scan = scann_cut_img_path.replace('.','_white.')
                    replace_color(scann_cut_img_path, replace_path_scan, target_rgb)
                    target_rgb = get_dominant_color(template_cut_img_path)
                    replace_path_yuan = template_cut_img_path.replace('.', '_white.')
                    replace_color(template_cut_img_path,replace_path_yuan,target_rgb)
    
                    ## 对图片进行等分切割,进行每部分对比
    
                    dest_folder_scan = dest_png_path+"/whitescan"+str(Util().random_num())
                    dest_folder_yuan = dest_png_path + "/whiteyuan" + str(Util().random_num())
                    dest_scan_points = get_parts(replace_path_scan,64)
                    get_parts_similar(replace_path_scan, 256, dest_folder=dest_folder_scan)
                    get_parts_similar(replace_path_yuan, 256, dest_folder=dest_folder_yuan)
    
                    # 遍历文件夹下所有文件
                    work_dir = dest_folder_scan
                    difflag = []
                    for parent, dirnames, filenames in os.walk(work_dir, followlinks=True):
                        for filename in filenames:
                            file_path_scan = os.path.join(parent, filename)
                            file_path_yuan = os.path.join(parent.replace(dest_folder_scan,dest_folder_yuan), filename)
                            # print('文件名:%s' % filename)
                            # print('文件完整路径:%s
    ' % file_path_scan)
                            # print('文件完整路径:%s
    ' % file_path_yuan)
                            dif = compare_image_with_hash(file_path_scan, file_path_yuan, max_dif=0)
                            print(dif)
                            if dif >= 30:
                            # if dif >= 5 and dif <=15:
                                print(dif)
                                index = int(filename.replace('image-','').replace('.png',''))
                                difflag.append(dest_scan_points[index-1])
                    print(difflag)
    
                    res_scan_path = dest_png_path+'/'+'scan'+str(Util().random_num())+'.png'
                    res_yuan_path = dest_png_path + '/' + 'yuan'+str(Util().random_num())+'.png'
                    # dif_mark(scann_cut_img_path,template_cut_img_path,res_scan_path,res_yuan_path,difflag)
                    get_img_result(scann_cut_img_path,template_cut_img_path,res_scan_path,res_yuan_path)
    
    
                    img_part += 1
    
                    dit_image = {'scann': res_scan_path.replace('static/', ''),
                                 'temp': res_yuan_path.replace('static/', ''), 'part': '第' + str(img_part) + '部分對比圖片'}
    
                    recog_images.append(dit_image)
    
    
    
                    # result_path = dest_png_path + '/result' + 
                    #     str(Util().random_num())  # 目标png文件夹名称
                    # if not os.path.exists(result_path):  # 判断存放图片的文件夹是否存在
                    #     os.makedirs(result_path)  # 若图片文件夹不存在就创建
    
    
    
                    # # 进行图片识别并标识图片差异
                    # imga_path = scann_cut_img_path
                    # imgb_path = template_cut_img_path
                    # print('imga_path:' +imga_path)
                    # print('imga_path:' +imgb_path)
                    # # scann_path = result_path + '/scann' + str(Util().random_num() + 1) + '.png'
                    # # template_path = result_path + '/template' + str(Util().random_num() + 1) + '.png'
                    # scann_path = result_path + '/scann' + 
                    #     str(Util().random_num() + 1) + '.png'
                    # template_path = result_path + '/template' + 
                    #     str(Util().random_num() + 1) + '.png'
    
    
                    # 识别两张图片并标识差异点
                    # try:
                    #     dif_two_pic(imga_path, imgb_path, scann_path, template_path)
                    #     img_part += 1
                    #
                    #     dit_image = {'scann': scann_path.replace('static/', ''),
                    #                  'temp': template_path.replace('static/', ''), 'part': '第' + str(img_part) + '部分對比圖片'}
                    #
                    #     recog_images.append(dit_image)
                    # except Exception as e:
                    #     print(e)
                    # dif_two_pic(imga_path, imgb_path, scann_path, template_path)
                    #
                    # img_part += 1
                    #
                    # dit_image = {'scann': scann_path.replace('static/',''), 'temp':template_path.replace('static/',''), 'part':'第'+str(img_part)+'部分對比圖片'}
                    #
                    # recog_images.append(dit_image)
        # 删除多余的图片
        bl_dirs = [dest_png_path,yuantuPath,'destpng7151565','yuantu7151565']
        # qingchu_files(bl_files,bl_dirs)
        if  os.path.exists(dest_png_path) and os.path.exists(yuantuPath):  # 判断存放图片的文件夹是否存在
            # os.makedirs(result_path)  # 若图片文件夹不存在就创建
            print('dest_png_path:'+dest_png_path)
            print('yuantuPath:' + yuantuPath)
            qingchu_imgs(dest_png_path.replace('static/images/',''), yuantuPath.replace('static/images/',''))
        return render_template("recog_result.html", recog_images=recog_images)
    
    
    if __name__ == '__main__':
        # app.run(host=host_ip, port=port, debug=True)
        app.run(host='127.0.0.1', port=5000, debug=True)
    

    写在最后

    写这个功能的代码是费了很大劲的,路过的朋友点个赞哈。
    交流:3459067873

  • 相关阅读:
    数组splice用法
    opacity 适配Ie
    直接贴页面,页面衔接处总会有一像素的间隔
    <script src='url'</script>显示问题
    弹出层
    CF789A. Anastasia and pebbles
    CF789C. Functions again
    HDU2161 Primes
    UVA11752 The Super Powers
    UVA11827 Maximum GCD
  • 原文地址:https://www.cnblogs.com/hongming-blogs/p/13499012.html
Copyright © 2011-2022 走看看