zoukankan      html  css  js  c++  java
  • 【刷题】HDU 1853 Cyclic Tour

    Problem Description

    There are N cities in our country, and M one-way roads connecting them. Now Little Tom wants to make several cyclic tours, which satisfy that, each cycle contain at least two cities, and each city belongs to one cycle exactly. Tom wants the total length of all the tours minimum, but he is too lazy to calculate. Can you help him?

    Input

    There are several test cases in the input. You should process to the end of file (EOF).
    The first line of each test case contains two integers N (N ≤ 100) and M, indicating the number of cities and the number of roads. The M lines followed, each of them contains three numbers A, B, and C, indicating that there is a road from city A to city B, whose length is C. (1 ≤ A,B ≤ N, A ≠ B, 1 ≤ C ≤ 1000).

    Output

    Output one number for each test case, indicating the minimum length of all the tours. If there are no such tours, output -1.

    Sample Input

    6 9
    1 2 5
    2 3 5
    3 1 10
    3 4 12
    4 1 8
    4 6 11
    5 4 7
    5 6 9
    6 5 4
    6 5
    1 2 1
    2 3 1
    3 4 1
    4 5 1
    5 6 1

    Sample Output

    42
    -1

    Hint

    In the first sample, there are two cycles, (1->2->3->1) and (6->5->4->6) whose length is 20 + 22 = 42.

    Description(CHN)

    给你一个 (N) 个点 (M) 条边的带权有向图,现在要你求这样一个值:

    该有向图中的所有顶点正好被1个或多个不相交的有向环覆盖.

    这个值就是 所有这些有向环的权值和. 要求该值越小越好.

    Solution

    有向图环覆盖,变成二分图匹配,经典套路
    然后要求权最小,就是二分图最大匹配,跑遍费用流就好了

    #include<bits/stdc++.h>
    #define ui unsigned int
    #define ll long long
    #define db double
    #define ld long double
    #define ull unsigned long long
    const int MAXN=100+10,MAXM=MAXN*MAXN,inf=0x3f3f3f3f;
    int n,m,e,beg[MAXN<<1],s,t,level[MAXN<<1],nex[MAXM<<1],to[MAXM<<1],cap[MAXM<<1],was[MAXM<<1],p[MAXN<<1],cur[MAXN<<1],vis[MAXN<<1],clk,answas;
    std::queue<int> q;
    template<typename T> inline void read(T &x)
    {
    	T data=0,w=1;
    	char ch=0;
    	while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
    	if(ch=='-')w=-1,ch=getchar();
    	while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
    	x=data*w;
    }
    template<typename T> inline void write(T x,char ch='')
    {
    	if(x<0)putchar('-'),x=-x;
    	if(x>9)write(x/10);
    	putchar(x%10+'0');
    	if(ch!='')putchar(ch);
    }
    template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
    template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
    template<typename T> inline T min(T x,T y){return x<y?x:y;}
    template<typename T> inline T max(T x,T y){return x>y?x:y;}
    inline void insert(int x,int y,int z,int k)
    {
    	to[++e]=y;
    	nex[e]=beg[x];
    	beg[x]=e;
    	cap[e]=z;
    	was[e]=k;
    	to[++e]=x;
    	nex[e]=beg[y];
    	beg[y]=e;
    	cap[e]=0;
    	was[e]=-k;
    }
    inline bool bfs()
    {
    	for(register int i=1;i<=t;++i)level[i]=inf;
    	level[s]=0;
    	p[s]=1;
    	q.push(s);
    	while(!q.empty())
    	{
    		int x=q.front();
    		q.pop();
    		p[x]=0;
    		for(register int i=beg[x];i;i=nex[i])
    			if(cap[i]&&level[to[i]]>level[x]+was[i])
    			{
    				level[to[i]]=level[x]+was[i];
    				if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
    			}
    	}
    	return level[t]!=inf;
    }
    inline int dfs(int x,int maxflow)
    {
    	if(x==t||!maxflow)return maxflow;
    	int res=0;
    	vis[x]=clk;
    	for(register int &i=cur[x];i;i=nex[i])
    		if((vis[x]^vis[to[i]])&&cap[i]&&level[to[i]]==level[x]+was[i])
    		{
    			int f=dfs(to[i],min(maxflow,cap[i]));
    			res+=f;
    			cap[i]-=f;
    			cap[i^1]+=f;
    			answas+=was[i]*f;
    			maxflow-=f;
    			if(!maxflow)break;
    		}
    	vis[x]=0;
    	return res;
    }
    inline int MCMF()
    {
    	int res=0;
    	while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
    	return res;
    }
    int main()
    {
    	while(scanf("%d%d",&n,&m)!=EOF)
    	{
    		e=1;memset(beg,0,sizeof(beg));answas=0;
    		for(register int i=1;i<=m;++i)
    		{
    			int u,v,k;read(u);read(v);read(k);
    			insert(v,u+n,1,k);
    		}
    		s=n+n+1,t=s+1;
    		for(register int i=1;i<=n;++i)insert(s,i,1,0),insert(i+n,t,1,0);
    		if(MCMF()!=n)puts("-1");
    		else write(answas,'
    ');
    	}
    	return 0;
    }
    
  • 相关阅读:
    JS中的call_user_func封装
    js中insertAdjacentHTML的玩法
    小tip: DOM appendHTML实现及insertAdjacentHTML
    js获取和设置属性的方法
    安装Yeoman,遇到的问题
    HTML中Select的使用详解
    jQuery Ajax异步处理Json数据详解
    chrome浏览器Uncaught TypeError: object is not a function问题解决
    SpringBoot Web实现文件上传下载功能实例解析
    SpringMVC Web实现文件上传下载功能实例解析
  • 原文地址:https://www.cnblogs.com/hongyj/p/9418066.html
Copyright © 2011-2022 走看看