zoukankan      html  css  js  c++  java
  • Eigen教程(3)

    整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html

    矩阵和向量的运算

    提供一些概述和细节:关于矩阵、向量以及标量的运算。

    介绍

    Eigen提供了matrix/vector的运算操作,既包括重载了c++的算术运算符+/-/*,也引入了一些特殊的运算比如点乘dot、叉乘cross等。

    对于Matrix类(matrix和vectors)这些操作只支持线性代数运算,比如:matrix1*matrix2表示矩阵的乘机,vetor+scalar是不允许的。如果你想执行非线性代数操作,请看下一篇(暂时放下)。

    加减

    左右两侧变量具有相同的尺寸(行和列),并且元素类型相同(Eigen不自动转化类型)操作包括:

    • 二元运算 + 如a+b
    • 二元运算 - 如a-b
    • 一元运算 - 如-a
    • 复合运算 += 如a+=b
    • 复合运算 -= 如a-=b
    #include <iostream>
    #include <Eigen/Dense>
    using namespace Eigen;
    int main()
    {
      Matrix2d a;
      a << 1, 2,
           3, 4;
      MatrixXd b(2,2);
      b << 2, 3,
           1, 4;
      std::cout << "a + b =
    " << a + b << std::endl;
      std::cout << "a - b =
    " << a - b << std::endl;
      std::cout << "Doing a += b;" << std::endl;
      a += b;
      std::cout << "Now a =
    " << a << std::endl;
      Vector3d v(1,2,3);
      Vector3d w(1,0,0);
      std::cout << "-v + w - v =
    " << -v + w - v << std::endl;
    }
    

    输出:

    a + b =
    3 5
    4 8
    a - b =
    -1 -1
     2  0
    Doing a += b;
    Now a =
    3 5
    4 8
    -v + w - v =
    -1
    -4
    -6
    

    标量乘法和除法

    乘/除标量是非常简单的,如下:

    • 二元运算 * 如matrix*scalar
    • 二元运算 * 如scalar*matrix
    • 二元运算 / 如matrix/scalar
    • 复合运算 *= 如matrix*=scalar
    • 复合运算 /= 如matrix/=scalar
    #include <iostream>
    #include <Eigen/Dense>
    using namespace Eigen;
    int main()
    {
      Matrix2d a;
      a << 1, 2,
           3, 4;
      Vector3d v(1,2,3);
      std::cout << "a * 2.5 =
    " << a * 2.5 << std::endl;
      std::cout << "0.1 * v =
    " << 0.1 * v << std::endl;
      std::cout << "Doing v *= 2;" << std::endl;
      v *= 2;
      std::cout << "Now v =
    " << v << std::endl;
    }
    

    结果

    a * 2.5 =
    2.5   5
    7.5  10
    0.1 * v =
    0.1
    0.2
    0.3
    Doing v *= 2;
    Now v =
    2
    4
    6
    

    表达式模板

    这里简单介绍,在高级主题中会详细解释。在Eigen中,线性运算比如+不会对变量自身做任何操作,会返回一个“表达式对象”来描述被执行的计算。当整个表达式被评估完(一般是遇到=号),实际的操作才执行。

    这样做主要是为了优化,比如

    VectorXf a(50), b(50), c(50), d(50);
    ...
    a = 3*b + 4*c + 5*d;
    

    Eigen会编译这段代码最终遍历一次即可运算完成。

    for(int i = 0; i < 50; ++i)
      a[i] = 3*b[i] + 4*c[i] + 5*d[i];
    

    因此,我们不必要担心大的线性表达式的运算效率。

    转置和共轭

    img 表示transpose转置

    img 表示conjugate共轭

    img 表示adjoint(共轭转置) 伴随矩阵

    MatrixXcf a = MatrixXcf::Random(2,2);
    cout << "Here is the matrix a
    " << a << endl;
    cout << "Here is the matrix a^T
    " << a.transpose() << endl;
    cout << "Here is the conjugate of a
    " << a.conjugate() << endl;
    cout << "Here is the matrix a^*
    " << a.adjoint() << endl;
    

    输出

    Here is the matrix a
     (-0.211,0.68) (-0.605,0.823)
     (0.597,0.566)  (0.536,-0.33)
    Here is the matrix a^T
     (-0.211,0.68)  (0.597,0.566)
    (-0.605,0.823)  (0.536,-0.33)
    Here is the conjugate of a
     (-0.211,-0.68) (-0.605,-0.823)
     (0.597,-0.566)    (0.536,0.33)
    Here is the matrix a^*
     (-0.211,-0.68)  (0.597,-0.566)
    (-0.605,-0.823)    (0.536,0.33)
    

    对于实数矩阵,conjugate不执行任何操作,adjoint等价于transpose。

    transpose和adjoint会简单的返回一个代理对象并不对本省做转置。如果执行 b=a.transpose() ,a不变,转置结果被赋值给b。如果执行 a=a.transpose() Eigen在转置结束之前结果会开始写入a,所以a的最终结果不一定等于a的转置。

    Matrix2i a; a << 1, 2, 3, 4;
    cout << "Here is the matrix a:
    " << a << endl;
    a = a.transpose(); // !!! do NOT do this !!!
    cout << "and the result of the aliasing effect:
    " << a << endl;
    
    Here is the matrix a:
    1 2
    3 4
    and the result of the aliasing effect:
    1 2
    2 4
    

    这被称为“别名问题”。在debug模式,当assertions打开的情况加,这种常见陷阱可以被自动检测到。

    a=a.transpose() 这种操作,可以执行in-palce转置。类似还有adjointInPlace。

    MatrixXf a(2,3); a << 1, 2, 3, 4, 5, 6;
    cout << "Here is the initial matrix a:
    " << a << endl;
    a.transposeInPlace();
    cout << "and after being transposed:
    " << a << endl;
    
    Here is the initial matrix a:
    1 2 3
    4 5 6
    and after being transposed:
    1 4
    2 5
    3 6
    

    矩阵-矩阵的乘法和矩阵-向量的乘法

    向量也是一种矩阵,实质都是矩阵-矩阵的乘法。

    • 二元运算 *如a*b
    • 复合运算 *=如a*=b
    #include <iostream>
    #include <Eigen/Dense>
    using namespace Eigen;
    int main()
    {
      Matrix2d mat;
      mat << 1, 2,
             3, 4;
      Vector2d u(-1,1), v(2,0);
      std::cout << "Here is mat*mat:
    " << mat*mat << std::endl;
      std::cout << "Here is mat*u:
    " << mat*u << std::endl;
      std::cout << "Here is u^T*mat:
    " << u.transpose()*mat << std::endl;
      std::cout << "Here is u^T*v:
    " << u.transpose()*v << std::endl;
      std::cout << "Here is u*v^T:
    " << u*v.transpose() << std::endl;
      std::cout << "Let's multiply mat by itself" << std::endl;
      mat = mat*mat;
      std::cout << "Now mat is mat:
    " << mat << std::endl;
    }
    

    输出

    Here is mat*mat:
     7 10
    15 22
    Here is mat*u:
    1
    1
    Here is u^T*mat:
    2 2
    Here is u^T*v:
    -2
    Here is u*v^T:
    -2 -0
     2  0
    Let's multiply mat by itself
    Now mat is mat:
     7 10
    15 22
    

    m=m*m并不会导致别名问题,Eigen在这里做了特殊处理,引入了临时变量。实质将编译为:

    tmp = m*m
    m = tmp
    

    如果你确定矩阵乘法是安全的(并没有别名问题),你可以使用noalias()函数来避免临时变量 c.noalias() += a*b

    点运算和叉运算

    dot()执行点积,cross()执行叉积,点运算得到1*1的矩阵。当然,点运算也可以用u.adjoint()*v来代替。

    #include <iostream>
    #include <Eigen/Dense>
    using namespace Eigen;
    using namespace std;
    int main()
    {
      Vector3d v(1,2,3);
      Vector3d w(0,1,2);
      cout << "Dot product: " << v.dot(w) << endl;
      double dp = v.adjoint()*w; // automatic conversion of the inner product to a scalar
      cout << "Dot product via a matrix product: " << dp << endl;
      cout << "Cross product:
    " << v.cross(w) << endl;
    }
    

    输出

    Dot product: 8
    Dot product via a matrix product: 8
    Cross product:
     1
    -2
     1
    

    注意:点积只对三维vector有效。对于复数,Eigen的点积是第一个变量共轭和第二个变量的线性积。

    基础的归约操作

    Eigen提供了而一些归约函数:sum()、prod()、maxCoeff()和minCoeff(),他们对所有元素进行操作。

    #include <iostream>
    #include <Eigen/Dense>
    using namespace std;
    int main()
    {
      Eigen::Matrix2d mat;
      mat << 1, 2,
             3, 4;
      cout << "Here is mat.sum():       " << mat.sum()       << endl;
      cout << "Here is mat.prod():      " << mat.prod()      << endl;
      cout << "Here is mat.mean():      " << mat.mean()      << endl;
      cout << "Here is mat.minCoeff():  " << mat.minCoeff()  << endl;
      cout << "Here is mat.maxCoeff():  " << mat.maxCoeff()  << endl;
      cout << "Here is mat.trace():     " << mat.trace()     << endl;
    }
    

    输出

    Here is mat.sum():       10
    Here is mat.prod():      24
    Here is mat.mean():      2.5
    Here is mat.minCoeff():  1
    Here is mat.maxCoeff():  4
    Here is mat.trace():     5
    

    trace表示矩阵的迹,对角元素的和等价于 a.diagonal().sum()

    minCoeff和maxCoeff函数也可以返回结果元素的位置信息。

    Matrix3f m = Matrix3f::Random();
      std::ptrdiff_t i, j;
      float minOfM = m.minCoeff(&i,&j);
      cout << "Here is the matrix m:
    " << m << endl;
      cout << "Its minimum coefficient (" << minOfM 
           << ") is at position (" << i << "," << j << ")
    
    ";
      RowVector4i v = RowVector4i::Random();
      int maxOfV = v.maxCoeff(&i);
      cout << "Here is the vector v: " << v << endl;
      cout << "Its maximum coefficient (" << maxOfV 
           << ") is at position " << i << endl;
    

    输出

    Here is the matrix m:
      0.68  0.597  -0.33
    -0.211  0.823  0.536
     0.566 -0.605 -0.444
    Its minimum coefficient (-0.605) is at position (2,1)
    
    Here is the vector v:  1  0  3 -3
    Its maximum coefficient (3) is at position 2
    

    操作的有效性

    Eigen会检测执行操作的有效性,在编译阶段Eigen会检测它们,错误信息是繁冗的,但错误信息会大写字母突出,比如:

    Matrix3f m;
    Vector4f v;
    v = m*v;      // Compile-time error: YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES
    

    当然动态尺寸的错误要在运行时发现,如果在debug模式,assertions会触发后,程序将崩溃。

    MatrixXf m(3,3);
    VectorXf v(4);
    v = m * v; // Run-time assertion failure here: "invalid matrix product"
    
  • 相关阅读:
    【bzoj4399】魔法少女LJJ 并查集+权值线段树合并
    【bzoj4059】[Cerc2012]Non-boring sequences 分治
    【bzoj4390】[Usaco2015 dec]Max Flow LCA
    【bzoj4127】Abs 树链剖分+线段树
    【bzoj1222】[HNOI2001]产品加工 背包dp
    【bzoj4966】总统选举 随机化+线段树
    protected internal == internal
    框架的一点小随笔
    WPF 的 数据源属性 和 数据源
    Python 运算符重载
  • 原文地址:https://www.cnblogs.com/houkai/p/6348044.html
Copyright © 2011-2022 走看看