zoukankan      html  css  js  c++  java
  • 黑幕背后的Autorelease

    原创文章,原地址:blog.sunnyxx.com

    我是前言

    Autorelease机制是iOS开发者管理对象内存的好伙伴,MRC中,调用[obj autorelease]来延迟内存的释放是一件简单自然的事,ARC下,我们甚至可以完全不知道Autorelease就能管理好内存。而在这背后,objc和编译器都帮我们做了哪些事呢,它们是如何协作来正确管理内存的呢?刨根问底,一起来探究下黑幕背后的Autorelease机制。

    Autorelease对象什么时候释放?

    这个问题拿来做面试题,问过很多人,没有几个能答对的。很多答案都是“当前作用域大括号结束时释放”,显然木有正确理解Autorelease机制。
    在没有手加Autorelease Pool的情况下,Autorelease对象是在当前的runloop迭代结束时释放的,而它能够释放的原因是系统在每个runloop迭代中都加入了自动释放池Push和Pop

    小实验

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    
    __weak id reference = nil;
    - (void)viewDidLoad {
        [super viewDidLoad];
        NSString *str = [NSString stringWithFormat:@"sunnyxx"];
        // str是一个autorelease对象,设置一个weak的引用来观察它
        reference = str;
    }
    - (void)viewWillAppear:(BOOL)animated {
        [super viewWillAppear:animated];
        NSLog(@"%@", reference); // Console: sunnyxx
    }
    - (void)viewDidAppear:(BOOL)animated {
        [super viewDidAppear:animated];
        NSLog(@"%@", reference); // Console: (null)
    }
    

    这个实验同时也证明了viewDidLoadviewWillAppear是在同一个runloop调用的,而viewDidAppear是在之后的某个runloop调用的。
    由于这个vc在loadView之后便add到了window层级上,所以viewDidLoadviewWillAppear是在同一个runloop调用的,因此在viewWillAppear中,这个autorelease的变量依然有值。 

    当然,我们也可以手动干预Autorelease对象的释放时机: 

    1
    2
    3
    4
    5
    6
    7
    8
    
    - (void)viewDidLoad
    {
        [super viewDidLoad];
        @autoreleasepool {
            NSString *str = [NSString stringWithFormat:@"sunnyxx"];
        }
        NSLog(@"%@", str); // Console: (null)
    }
    

    Autorelease原理

    AutoreleasePoolPage

    ARC下,我们使用@autoreleasepool{}来使用一个AutoreleasePool,随后编译器将其改写成下面的样子: 

    1
    2
    3
    
    void *context = objc_autoreleasePoolPush();
    // {}中的代码
    objc_autoreleasePoolPop(context);
    

    而这两个函数都是对AutoreleasePoolPage的简单封装,所以自动释放机制的核心就在于这个类。 

    AutoreleasePoolPage是一个C++实现的类

    • AutoreleasePool并没有单独的结构,而是由若干个AutoreleasePoolPage以双向链表的形式组合而成(分别对应结构中的parent指针和child指针)
    • AutoreleasePool是按线程一一对应的(结构中的thread指针指向当前线程)
    • AutoreleasePoolPage每个对象会开辟4096字节内存(也就是虚拟内存一页的大小),除了上面的实例变量所占空间,剩下的空间全部用来储存autorelease对象的地址
    • 上面的id *next指针作为游标指向栈顶最新add进来的autorelease对象的下一个位置
    • 一个AutoreleasePoolPage的空间被占满时,会新建一个AutoreleasePoolPage对象,连接链表,后来的autorelease对象在新的page加入

    所以,若当前线程中只有一个AutoreleasePoolPage对象,并记录了很多autorelease对象地址时内存如下图:

    图中的情况,这一页再加入一个autorelease对象就要满了(也就是next指针马上指向栈顶),这时就要执行上面说的操作,建立下一页page对象,与这一页链表连接完成后,新page的next指针被初始化在栈底(begin的位置),然后继续向栈顶添加新对象。

    所以,向一个对象发送- autorelease消息,就是将这个对象加入到当前AutoreleasePoolPage的栈顶next指针指向的位置

    释放时刻

    每当进行一次objc_autoreleasePoolPush调用时,runtime向当前的AutoreleasePoolPage中add进一个哨兵对象,值为0(也就是个nil),那么这一个page就变成了下面的样子: 

    objc_autoreleasePoolPush的返回值正是这个哨兵对象的地址,被objc_autoreleasePoolPop(哨兵对象)作为入参,于是:

    1. 根据传入的哨兵对象地址找到哨兵对象所处的page
    2. 在当前page中,将晚于哨兵对象插入的所有autorelease对象都发送一次- release消息,并向回移动next指针到正确位置
    3. 补充2:从最新加入的对象一直向前清理,可以向前跨越若干个page,直到哨兵所在的page

    刚才的objc_autoreleasePoolPop执行后,最终变成了下面的样子: 

    嵌套的AutoreleasePool

    知道了上面的原理,嵌套的AutoreleasePool就非常简单了,pop的时候总会释放到上次push的位置为止,多层的pool就是多个哨兵对象而已,就像剥洋葱一样,每次一层,互不影响。


    【附加内容】

    Autorelease返回值的快速释放机制

    值得一提的是,ARC下,runtime有一套对autorelease返回值的优化策略。
    比如一个工厂方法: 

    1
    2
    3
    4
    5
    
    + (instancetype)createSark {
        return [self new]; 
    }
    // caller
    Sark *sark = [Sark createSark];
    

    秉着谁创建谁释放的原则,返回值需要是一个autorelease对象才能配合调用方正确管理内存,于是乎编译器改写成了形如下面的代码:

    1
    2
    3
    4
    5
    6
    7
    8
    
    + (instancetype)createSark {
        id tmp = [self new];
        return objc_autoreleaseReturnValue(tmp); // 代替我们调用autorelease
    }
    // caller
    id tmp = objc_retainAutoreleasedReturnValue([Sark createSark]) // 代替我们调用retain
    Sark *sark = tmp;
    objc_storeStrong(&sark, nil); // 相当于代替我们调用了release
    

    一切看上去都很好,不过既然编译器知道了这么多信息,干嘛还要劳烦autorelease这个开销不小的机制呢?于是乎,runtime使用了一些黑魔法将这个问题解决了。

    黑魔法之Thread Local Storage

    Thread Local Storage(TLS)线程局部存储,目的很简单,将一块内存作为某个线程专有的存储,以key-value的形式进行读写,比如在非arm架构下,使用pthread提供的方法实现: 

    1
    2
    
    void* pthread_getspecific(pthread_key_t);
    int pthread_setspecific(pthread_key_t , const void *);
    

    说它是黑魔法可能被懂pthread的笑话- - 

    在返回值身上调用objc_autoreleaseReturnValue方法时,runtime将这个返回值object储存在TLS中,然后直接返回这个object(不调用autorelease);同时,在外部接收这个返回值的objc_retainAutoreleasedReturnValue里,发现TLS中正好存了这个对象,那么直接返回这个object(不调用retain)。
    于是乎,调用方和被调方利用TLS做中转,很有默契的免去了对返回值的内存管理。 

    于是问题又来了,假如被调方和主调方只有一边是ARC环境编译的该咋办?(比如我们在ARC环境下用了非ARC编译的第三方库,或者反之)
    只能动用更高级的黑魔法。 

    黑魔法之__builtin_return_address

    这个内建函数原型是char *__builtin_return_address(int level),作用是得到函数的返回地址,参数表示层数,如__builtin_return_address(0)表示当前函数体返回地址,传1是调用这个函数的外层函数的返回值地址,以此类推。

    1
    2
    3
    4
    5
    6
    
    - (int)foo {
        NSLog(@"%p", __builtin_return_address(0)); // 根据这个地址能找到下面ret的地址
        return 1;
    }
    // caller
    int ret = [sark foo];
    

    看上去也没啥厉害的,不过要知道,函数的返回值地址,也就对应着调用者结束这次调用的地址(或者相差某个固定的偏移量,根据编译器决定)
    也就是说,被调用的函数也有翻身做地主的机会了,可以反过来对主调方干点坏事。
    回到上面的问题,如果一个函数返回前知道调用方是ARC还是非ARC,就有机会对于不同情况做不同的处理

    黑魔法之反查汇编指令

    通过上面的__builtin_return_address加某些偏移量,被调方可以定位到主调方在返回值后面的汇编指令: 

    1
    2
    3
    4
    5
    
    // caller 
    int ret = [sark foo];
    // 内存中接下来的汇编指令(x86,我不懂汇编,瞎写的)
    movq ??? ???
    callq ???
    

    而这些汇编指令在内存中的值是固定的,比如movq对应着0x48。
    于是乎,就有了下面的这个函数,入参是调用方__builtin_return_address传入值

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    
    static bool callerAcceptsFastAutorelease(const void * const ra0) {
        const uint8_t *ra1 = (const uint8_t *)ra0;
        const uint16_t *ra2;
        const uint32_t *ra4 = (const uint32_t *)ra1;
        const void **sym;
        // 48 89 c7    movq  %rax,%rdi
        // e8          callq symbol
        if (*ra4 != 0xe8c78948) {
            return false;
        }
        ra1 += (long)*(const int32_t *)(ra1 + 4) + 8l;
        ra2 = (const uint16_t *)ra1;
        // ff 25       jmpq *symbol@DYLDMAGIC(%rip)
        if (*ra2 != 0x25ff) {
            return false;
        }
        ra1 += 6l + (long)*(const int32_t *)(ra1 + 2);
        sym = (const void **)ra1;
        if (*sym != objc_retainAutoreleasedReturnValue)
        {
            return false;
        }
        return true;
    }
    

    它检验了主调方在返回值之后是否紧接着调用了objc_retainAutoreleasedReturnValue,如果是,就知道了外部是ARC环境,反之就走没被优化的老逻辑。

    其他Autorelease相关知识点

    使用容器的block版本的枚举器时,内部会自动添加一个AutoreleasePool: 

    1
    2
    3
    
    [array enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
        // 这里被一个局部@autoreleasepool包围着
    }];
    

    当然,在普通for循环和for in循环中没有,所以,还是新版的block版本枚举器更加方便。for循环中遍历产生大量autorelease变量时,就需要手加局部AutoreleasePool咯。

  • 相关阅读:
    Groovy基本语法
    利用IntelliJ IDEA创建第一个Groovy工程
    创建maven或者Gradle项目的时候GroupId和ArtifactId以及Version是什么意思?
    使用IDEA2017创建java web +maven项目
    Eclipse集成Tomcat的步骤,我已测试N次都是成功的
    访问 Tomcat支配项目去除项目名和端口号通过IP地址(或域名)访问
    SSM框架原理,作用及使用方法
    SpringMVC整合Shiro权限框架
    svn过滤文件配置
    svn
  • 原文地址:https://www.cnblogs.com/houzhitong/p/4917579.html
Copyright © 2011-2022 走看看